Hist-of-rus.ru

Строй журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Угол внутреннего откоса песка

Влияние водонасыщенности на показатели прочности песчаного грунта

Величина углов внутреннего трения песчаного грунта в зависимости от его гранулометрического состава и плотности. Непостоянство коэффициента трения для одной породы в зависимости от ее состояния, кривые изменения в связи с изменением состояния грунта.

РубрикаГеология, гидрология и геодезия
Видкурсовая работа
Языкрусский
Дата добавления24.06.2011

«Влияние водонасыщенности на показатели прочности песчаного грунта»

Наиболее важными характеристиками при оценке грунта являются объемный вес, зависимость пористости от давления, угол внутреннего трения и сцепление. Как известно эти характеристики не могут считаться «константами», а зависят от состояния породы.

Целью работы является изучение влияния водонасыщенности на показатели прочности песчаного грунта. В последующих главах будет проведен некоторый анализ экспериментальным материалам по сопротивлению песчаного грунта сдвигу в воздушно-сухом и полностью водонасыщенном состоянии, полученным автором в лаборатории изучения физико-механических свойств грунтов. На конкретном примере будет рассмотрено непостоянство коэффициента трения для одной и той же породы в зависимости от ее состояния. А также построены кривые изменения этой характеристики в связи с изменением состояния грунта от воздушно-сухого к полностью водонасыщенному состоянию.

Также будет рассмотрена величина углов внутреннего трения песчаного грунта в зависимости от его гранулометрического состава и плотности.

грунт песчаный прочность водонасыщенность

1. Современные представления о влиянии водонасыщенности на показатели прочности песчаного грунта

Прочность грунтов в широком смысле — это их способность сопротивляться разрушению. В инженерно-геологических целях, в первую очередь, важно знать механическую прочность грунтов, т.е. их способность сопротивляться разрушению под влиянием механических напряжений. Причем, если деформационные характеристики грунтов определяются при напряжениях, не приводящих к разрушению, то параметры прочности грунтов соответствуют критическим разрушающим напряжениям и определяются при предельных нагрузках, вызывающих либо разделение тела на части (для упругих грунтов), либо необратимое изменение формы тела в результате деформаций пластического течения (для пластичных грунтов).

Физическая природа прочности грунтов определяется силами взаимодействия между их структурными элементами — кристаллами, зернами, обломками, агрегатами, частицами и т.п., т.е. зависит от типа и особенностей структурных связей. Чем больше силы взаимодействия между структурными элементами грунта, тем выше в целом его прочность [3].

Современная научная мысль многих ученых дает определенное указание, что на устойчивость и прочность грунта в сооружении большое влияние оказывает вода, присутствующая в его порах, поэтому водопрочность грунтов наряду с другими физическими характеристиками занимает значительное место в грунтоведении.

К песчаным грунтам принято относить грунты, которые имеют зернистое строение и между зернами которых из-за отсутствия того или иного цементирующего вещества нет сколько-нибудь значительной связности. Максимальное количество воды, которое может быть поглощено песчаными грунтами, не превосходит объема их пор в сухом состоянии. Впитывая воду, эти грунты не расширяются (не набухают), а высыхая — не сжимаются (не дают усадки). Кроме того, отличительными свойствами песчаных грунтов является отсутствие пластичности и некоторая способность подсасывать воду по капиллярам.

Физико-механическое взаимодействие поровой воды с поверхностью частиц не оказывает сколько-нибудь заметного влияния на свойства сыпучих грунтов. Вследствие весьма значительного удельного давления в точках контакта жестких песчаных частиц, раздавливающего пленку рыхлосвязанной воды, последняя, по-видимому, не играет сколько-нибудь существенной роли в механических свойствах песка [4].

В песчаных грунтах роль воды, заполняющей поры, ничтожна из-за их большой водопропускной способности. Вода, заполняющая поры, свободно уходит при сжатии и не оказывает никакого влияния на стабилизацию деформаций. Огромное влияние на прочностные свойства этих грунтов оказывает их плотность сложения (пористость). С точки зрения гидрофизических свойств поведение грунтовой массы пылеватого песчаного грунта значительно отличается от поведения среднезернистого песка. Объясняется это тем, что в первом случае из-за больших размеров пор грунта излишняя вода при сжатии вытесняется сейчас же, почти независимо от толщины обжимаемого слоя. В пылеватом же грунте процесс вытеснения воды проходит медленно и находится в определенной зависимости от толщины обжимаемого слоя. Это свидетельствует о том, что нагрузка в крупнодисперсной грунтовой массе сразу же воспринимается твердой фазой, иначе говоря, реакция возникает только в скелете, тогда как в мелкодисперсной грунтовой массе нагрузка в первый момент воспринимается водой и только по мере ее вытеснения постепенно передается скелету [1]. Коэффициент фильтрации пылеватых песков обычно не превышает 1 м/сут, мелко-, средне- и крупнозернистых — 40-50 м/сут. Водоотдача песчаных грунтов также определяется в основном гранулометрическим составом и характером сложения. Коэффициент водоотдачи среднезернистых песков 0,20-0,25, мелкозернистых 0,15-0,20, пылеватых песков и супесей легких 0,10-0,15. Изменение степени водонасыщения песчаных грунтов естественной влажности мало сказывается на величине сжимаемости грунтов. Увлажнение же воздушно-сухих песков сопровождается быстрой дополнительной деформацией (просадкой), величина которой в зависимости от начальной плотности, дисперсности и давления при нагрузках до 0.3-0.4 МПа может составлять около 1-2.5% [3]. Песчаные грунты, согласно классификации ГОСТ 25100-95, подразделяются в зависимости от крупности частиц на следующие виды (табл. 1).

Читать еще:  Устойчивый угол откоса борта карьера

Угол внутреннего откоса песка

Качественно, быстро, c наилучшей стоимостью

НОРМАТИВНЫЕ И РАСЧЕТНЫЕ ЗНАЧЕНИЯ ХАРАКТЕРИСТИК ГРУНТОВ

2.10. Основными параметрами механических свой ств гр унтов, определяющими несущую способность оснований и их деформации, являются прочностные и деформационные характеристики грунтов (угол внутреннего трения j , удельное сцепление с, модуль деформации грунтов Е, предел прочности на одноосное сжатие скальных грунтов Rc и т.п.). Допускается применять другие параметры, характеризующие взаимодействие фундамент ов с грунтом основания и установленные опытным путем (удельные силы пучения при промерзании, коэффициенты жесткости основания и пр.).

Примечание . Далее, за исключением специально оговоренных случаев, под термином «характеристики грунтов» понимаются не только механические, но и физические характеристики грунтов, а также упомянутые в настоящем пункте параметры.

2.11. Характеристики грунтов природного сложения, а также искусственного происхождения, должны определяться, как правило, на основе их непосредственных испытаний в полевых или лабораторных условиях с учетом возможного изменения влажности грунтов в процессе строительства и эксплуатации сооружений.

2.12. Нормативные и расчетные значения характеристик грунтов устанавливаются на основе статистической обработки результатов испытаний по методике, изложенной в ГОСТ 20522-75 .

2.13. Все расчеты оснований должны выполняться с использованием расчетных значений характеристик грунтов Х, определяемых по формуле

где Х n — нормативное значение данной характеристики;

g g — коэффициент надежности по грунту.

Коэффициент надежности по грунту g g при вычислении расчетных значений прочностных характеристик (удельного сцепления с, угла внутреннего трения j нескальных грунтов и предела прочности на одноосное сжатие скальных грунтов Rc , а также плотности грунта r ) устанавливается в зависимости от изменчивости этих характеристик, числа определений и значения доверительной вероятности a . Для прочих характеристик грунта допускается принимать g g = 1.

Примечание . Расчетное значение удельного веса грунта g определяется умножением расчетного значения плотности грунта на ускорение свободного падения.

2.14. Доверительная вероятность a расчетных значений характеристик грунтов принимается при расчетах оснований по несущей способности a = 0,95, по деформациям a = 0,85.

Доверительная вероятность a для расчета оснований опор мостов и труб под насыпями принимается согласно указаниям п. 12.4 . При соответствующем обосновании для зданий и сооружений I класса допускается принимать большую доверительную вероятность расчетных значений характеристик грунтов, но не выше 0,99.

Примечания : 1. Расчетные значения характеристик грунтов, соответствующие различным значениям доверительной вероятности, должны приводиться в отчетах по инженерно-геологическим изысканиям.

2. Расчетные значения характеристик грунтов с, j и g для расчетов по несущей способности обозначаются с I , j I и g I , а по деформациям с II , j II и g II .

2.15. Количество определений характеристик грунтов, необходимое для вычисления их нормативных и расчетных значений, должно устанавливаться в зависимости от степени неоднородности грунтов основания, требуемой точности вычисления характеристики и класса здания или сооружения и указываться в программе исследований.

Количество одноименных частных определений для каждого выделенного на площадке инженерно-геологического элемента должно быть не менее шести. При определении модуля деформации по результатам испытаний грунтов в полевых условиях штампом допускается ограничиваться результатами трех испытаний (или двух, если они отклоняются от среднего не более чем на 25 %).

2.16. Для предварительных расчетов оснований, а также для окончательных расчетов оснований зданий и сооружений II и III классов и опор воздушных линий электропередачи и связи независимо от их класса допускается определять нормативные и расчетные значения прочностных и деформационных характеристик грунтов по их физическим характеристикам.

Примечания : 1. Нормативные значения угла внутреннего трения j n , удельного сцепления с n и модуля деформации Е допускается принимать по табл. 1-3 рекомендуемого приложения 1 . Расчетные значения характеристик в этом случае принимаются при следующих значениях коэффициента надежности по грунту:

в расчетах оснований по деформациям g g = 1;

в расчетах оснований по несущей

для удельного сцепления g g (с) = 1,5;

для угла внутреннего трения

2. Для отдельных районов допускается вместо таблиц рекомендуемого приложения 1 пользоваться согласованными с Госстроем СССР таблицами характеристик грунтов, специфических для этих районов.

Таблица классификации грунтов по группам

От надежности функционирования системы «основание-фундамент-сооружение» зависит и срок эксплуатации здания, и уровень «качества жизни» его жильцов. Причем, надежность указанной системы базируется именно на характеристиках грунта, ведь любая конструкция должна опираться на надежное основание.

Читать еще:  Угол рассвета у верхнего откоса

Именно поэтому, успех большинства начинаний строительных компаний зависит от грамотного выбора месторасположения строительной площадки. И такой выбор, в свою очередь, невозможен без понимания тех принципов, на которых основывается классификация грунтов.

С точки зрения строительных технологий существуют четыре основных класса, к которым принадлежат:

— скальные грунты, структура которых однородна и основана на жестких связях кристаллического типа;
— дисперсные грунты, состоящие из несвязанных между собой минеральных частиц;
— природные, мерзлые грунты, структура которых образовалась естественным путем, под действием низких температур;
— техногенные грунты, структура которых образовалась искусственным путем, в результате деятельности человека.

Впрочем, подобная классификация грунтов имеет несколько упрощенный характер и показывает только на степень однородности основания. Исходя из этого, любой скальный грунт представляет собой монолитное основание, состоящее из плотных пород. В свою очередь, любой нескальный грунт основан на смеси минеральных и органических частиц с водой и воздухом.

Разумеется, в строительном деле пользы от такой классификации немного. Поэтому, каждый тип основания разделяют на несколько классов, групп, типов и разновидностей. Подобная классификация грунтов по группам и разновидностям позволяет без труда сориентироваться в предполагаемых характеристиках будущего основания и дает возможность использовать эти знания в процессе строительства дома.

Например, принадлежность к той или иной группе в классификации грунтов определяется характером структурных связей, влияющих на прочностные характеристики основания. А конкретный тип грунта указывает на вещественный состав почвы. Причем, каждая классификационная разновидность указывает на конкретное соотношение компонентов вещественного состава.

Таким образом, глубокая классификация грунтов по группам и разновидностям дает вполне персонифицированное представление обо всех преимущества и недостатки будущей строительной площадки.

Например, в наиболее распространенном на территории европейской части России классе дисперсных грунтов имеется всего две группы, разделяющие эту классификацию на связанные и несвязанные почвы. Кроме того, в отдельную подгруппу дисперсного класса выделены особые, илистые грунты.

Такая классификация грунтов означает, что среди дисперсных грунтов имеются группы, как с ярко выраженными связями в структуре, так и с отсутствием таковых связей. К первой группе связанных дисперсных грунтов относятся глинистые, илистые и заторфованные виды почвы. Дальнейшая классификация дисперсных грунтов позволяет выделить группу с несвязной структурой – пески и крупнообломочные грунты.

В практическом плане подобная классификация грунтов по группам позволяет получить представление о физических характеристиках почвы «без оглядки» на конкретный вид грунта. У дисперсных связных грунтов практически совпадают такие характеристики, как естественная влажность (колеблется в пределах 20%), насыпная плотность (около 1,5 тонн на кубометр), коэффициент разрыхления (от 1,2 до 1,3), размер частиц (около 0,005 миллиметра) и даже число пластичности.

Аналогичные совпадения характерны и для дисперсных несвязных грунтов. То есть, имея представление о свойствах одного вида грунта, мы получаем сведения о характеристиках всех видов почвы из конкретной группы, что позволяет внедрять в процесс проектирования усредненные схемы, облегчающие прочностные расчеты.

Кроме того, помимо вышеприведенных схем, существует и особая классификация грунтов по трудности разработки. В основе этой классификации лежит уровень «сопротивляемости» грунта механическому воздействию со стороны землеройной техники.

Причем, классификация грунтов по трудности разработки зависит от конкретного вида техники и разделяет все типы грунтов на 7 основных групп, к которым принадлежат дисперсные, связанные и несвязанные грунты (группы 1-5) и скальные грунты (группы 6-7).

Песок, суглинок и глинистые грунты (принадлежат к 1-4 группе) разрабатывают обычными экскаваторами и бульдозерами. А вот остальные участники классификации требуют более решительного подхода, основанного на механическом рыхлении или взрывных работах. В итоге, можно сказать, что классификация грунтов по трудности разработки зависит от таких характеристик, как сцепление, разрыхляемость и плотность грунта.

ГЕНЕТИЧЕСКИЕ ТИПЫ ГРУНТОВ ЧЕТВЕРТИЧНОГО ВОЗРАСТА
Типы грунтовОбозначение
Аллювиальные (речные отложения)a
Озерныеl
Озерно-аллювиальные
Делювиальные (отложения дождевых и талых вод на склонах и у подножия возвышенностей)d
Аллювиально-делювиальныеad
Эоловые (осаждения из воздуха): эоловые пески, лессовые грунтыL
Гляциальные (ледниковые отложения)g
Флювиогляциальные (отложении ледниковых потоков)f
Озерно-ледниковыеlg
Элювиальные (продукты выветривания горных пород, оставшиеся на месте образования)е
Элювиально-делювиальноеed
Пролювиальные (отложения бурных дождевых потоков в горных областях)p
Аллювиально-пролювиальныеap
Морскиеm
РАСЧЕТНЫЕ ФОРМУЛЫ ОСНОВНЫХ ФИЗИЧЕСКИХ ХАРАКТЕРИСТИК ГРУНТОВ
ХарактеристикиФормула
Плотность сухого грунта, г/см 3 (т/м 3 )ρd = ρ/(1 + w)
Пористость %n = (1 − ρd /ρs)·100
Коэффициент пористостиe = n/(100 − n) или e = (ρs − ρd)/ ρd
Полная влагоемкостьω = eρw /ρs
Степень влажности
Число пластичностиIp = ωL − ωp
Показатель текучестиIL = (ω − ωp)/(ωL − ωp)
Читать еще:  Не качественная отделка откосов
ПЛОТНОСТЬ ЧАСТИЦ ρs ПЕСЧАНЫХ И ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ
Грунтρs, г/см 3
диапазонсредняя
Песок2,65–2,672,66
Супесь2,68–2,722,70
Суглинок2,69–2,732,71
Глина2,71–2,762,74
КЛАССИФИКАЦИЯ СКАЛЬНЫХ ГРУНТОВ
ГрунтПоказатель
По пределу прочности на одноосное сжатие в водонасыщенном состоянии, МПа
Очень прочныйRc > 120
Прочный120 ≥ Rc > 50
Средней прочности50 ≥ Rc > 15
Малопрочный15 ≥ Rc > 5
Пониженной прочности5 ≥ Rc > 3
Низкой прочности3 ≥ Rc ≥ 1
Весьма низкой прочностиRc 200
>10
>2
>50
Песок:
гравелистый
крупный
средней крупности
мелкий
пылеватый
>2
>0,5
>0,25
>0,1
>0,1
>25
>50
>50
≥75
0,7
Мелкийe 0,75
Пылеватыйe 0,8
По удельному сопротивлению грунта, МПа, под наконечником (конусом) зонда при статическом зондировании
Крупный и средней крупности независимо от влажностиqc > 1515 ≥ qc ≥ 5qc 1212 ≥ qc ≥ 4qc 10
qc > 7
10 ≥ qc ≥ 3
7 ≥ qc ≥ 2
qc 12,512,5 ≥ qd ≥ 3,5qd 11
qd > 8,5
11 ≥ qd ≥ 3
8,5 ≥ qd ≥ 2
qd 8,88,5 ≥ qd ≥ 2qd 17
ПОДРАЗДЕЛЕНИЕ ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ ПО ПОКАЗАТЕЛЮ ТЕКУЧЕСТИ
ГрунтПоказатель текучести
Супесь:IL 1
Суглинок и глина:
твердыеIL 1
ПОДРАЗДЕЛЕНИЕ ИЛОВ ПО КОЭФФИЦИЕНТУ ПОРИСТОСТИ
ИлКоэффициент пористости
Супесчаныйе ≥ 0,9
Суглинистыйе ≥ 1
Глинистыйе ≥ 1,5
ПОДРАЗДЕЛЕНИЕ САПРОПЕЛЕЙ ПО ОТНОСИТЕЛЬНОМУ СОДЕРЖАНИЮ ОРГАНИЧЕСКОГО ВЕЩЕСТВА
СапропельОтносительное содержание вещества
Минеральный0,1 0,5
НОРМАТИВНЫЕ ЗНАЧЕНИЯ МОДУЛЕЙ ДЕФОРМАЦИИ Е ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ

Зависимость осадки штампа s от давления р

Схема испытания грунта прессиометром

1 — резиновая камера; 2 — скважина; 3 — шланг; 4 — баллон сжатого воздуха: 5 — измерительное устройство

Зависимость деформаций стенок скважины Δr от давления р

Для определения модуля деформации используют график зависимости осадки от давления, на котором выделяют линейный участок, проводят через него осредняющую прямую и вычисляют модуль деформации Е в соответствии с теорией линейно-деформируемой среды по формуле

E = (1 − ν 2 )ωdΔp / Δs

Классификация грунтов по группам

Определение свойств грунта на участке и правильная классификация грунтов помогает в правильном выборе типа несущей части постройки. Следует помнить, что строящееся сооружение поддерживается не фундаментом, а фундаментом под ним, то есть грунтом. Несущие конструкции передают нагрузку только от верхних элементов. Чтобы выбрать фундамент, необходимо ознакомиться с классификацией грунтов по группам в строительстве и с ее зависимостью от различных характеристик.
Так, разделение почв на типы осуществляется на основании ГОСТ 25100-2011. Этот документ содержит большое количество таблиц с учетом различных характеристик.
Геологические изыскания проводятся для определения типа грунта. На этом этапе необходимо изучить важнейшие свойства основы.

Виды грунтов

Грунты и их характеристики

Плывуны – содержат мелкие глинистые или песчаные частицы, разбавленные водой. Степень плывучести определяется по количеству воды в грунте.

Сыпучие грунты (песок, гравий, щебень, галька) состоят из слабосцепленных между собой частиц разного размера.

Мягкие грунты – содержат слабосвязанные между собой частицы землистых пород (глинистых или песчано-глинистых).
Слабые грунты (гипс, глинистые сланцы и др.) состоят из слабосвязанных между собой частиц пористых пород.

Средние грунты – (плотные известняки, плотные сланцы, песчаники, известковый шпат) состоят из связанных между собой частиц пород средней твердости.

Крепкие грунты – (плотные известняки, кварцевые породы, полевые шпаты и др.) содержат связанные между собой частицы пород большой твердости.

Скачать ГОСТ 25100-2011 .pdf Грунты и их классификация

Сведения о государственном стандарте ГОСТ 25100-2011

Стандарт разработан рациональным объединением изыскателей (НОИЗ), Научноисследовательским, проектно-изыскательским и конструкторскотехнологическим институтом (НИИОСП) им. Н.М.Герсеванова – институтом ОАО “НИЦ “Строительство”, Институтом геоэкологии им. Е.М.Сергеева РАН, Московским государственным университетом (МГУ) им. М.В.Ломоносова при участии ОАО “Росстройизыскания”, ОАО “Фундаментпроект”, Государственного унитарного предприятия г.Москвы “Мосгоргеотрест”, ОАО “ГСПИ”, ООО “Мостдоргеотрест”, Государственного предприятия Московской области “Мособлгеотрест”, Московского геологоразведочного института (МГРИ-РГГРУ), Московского государственного строительного университета (МГСУ)

Стандарт ГОСТ 25100-2011 внесен техническим комитетом по стандартизации ТК 465 “Строительство”

Стандарт ГОСТ 25100-2011 принят межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и оценке соответствия в строительстве (МНТКС) (приложение Д к протоколу N 39 от 8 декабря 2011 г.)

Разрабатывать плывуны, сыпучие, мягкие и слабые грунты легко, но они требуют постоянного укрепления стенок шахты деревянными щитами с распорками. Средние и крепкие грунты разрабатывать тяжелее, но они не осыпаются и не требуют дополнительного крепления.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector