Hist-of-rus.ru

Строй журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как рассчитать толщину стены по кирпичам

Как рассчитать толщину стен из кирпича?

При строительстве своего дома одним из главных моментов является возведение стен. Кладка несущих поверхностей чаще всего проводится с применением кирпича, но какой должна быть толщина стены из кирпича в этом случае? К тому же стены в доме бывают не только несущими, но еще выполняющими функции перегородок и облицовки- какой должна быть толщина кирпичной стены в этих случаях? Об этом, я расскажу в сегодняшней статье.

От чего зависит толщина стены из кирпича?

Этот вопрос очень актуален для всех людей, которые строят собственный кирпичный дом и только постигают азы строительства. На первый взгляд кирпичная стена весьма простая конструкция, она имеет высоту, ширину и толщину. Интересующая нас грузность стены зависит в первую очередь от ее конечной общей площади. То есть, чем шире и выше стена, тем толще она должна быть.

Но, причем здесь толщина стены из кирпича? – спросите вы. При том, что в строительстве, многое завязано на прочности материала. У кирпича, как и у других строительных материалов, есть свой ГОСТ, который учитывает его прочность. Также грузность кладки зависит от ее устойчивости. Чем уже и выше будет несущая поверхность, тем толще она обязана быть, особенно это касается основания.

Еще один параметр, который влияет на общую грузность поверхности, это теплопроводность материала. У обыкновенного полнотелого блока теплопроводность довольно высокая. Это значит, что он, сам по себе, плохая теплоизоляция. Поэтому чтобы выйти на стандартизированные показатели теплопроводности, строя дом исключительно из силикатных или любых других блоков, стены должны быть очень толстыми.

Но, в целях экономии средств и сохранения здравого смысла, люди отказались от идей строить дома напоминающие бункер. Чтобы иметь прочные несущие поверхности и при этом хорошую теплоизоляцию, стали применять многослойную схему. Где одним слоем выступает силикатная кладка, достаточной грузности, чтобы выдерживать все нагрузки, которым она подвержена, второй слой – это утепляющий материал, а третий – облицовка, которой так же может выступать кирпич.

Выбор кирпича

В зависимости от того, какой должна быть толщина несущей стены из кирпича, нужно выбирать определенный вид материала, имеющий разные размеры и даже структуру. Так, по структуре их можно разделить на полнотелые и дырчатые. Полнотелые материалы имеют большую прочность, стоимость, и теплопроводность.

Стройматериал с полостями внутри в виде сквозных отверстий не так прочен, имеет меньшую стоимость, но при этом способность к теплоизоляции у дырчатого блока выше. Это достигается за счет наличия в нем воздушных карманов.

Размеры любых видов рассматриваемого материала также могут разниться. Он может быть:

  • Одинарным;
  • Полуторным;
  • Двойным;
  • Половинчатым.

Одинарный блок, это стройматериал, стандартных размеров, такой к которому мы все привыкли. Его размеры таковы: 250Х120Х65 мм.

Полуторный или утолщенный – имеет большую грузность, и его размеры выглядят так: 250Х120Х88 мм. Двойной – соответственно, имеет сечение двух одинарных блоков 250Х120Х138 мм.

Половинчатый – это малыш среди своих собратьев, он имеет, как вы, вероятно, уже догадались, половину толщины одинарного – 250Х120 Х12 мм.

Как видно, единственные отличия в размерах этого стройматериала в его толщине, а длина и ширина одинаковые.

В зависимости от того, какой будет толщина стены из кирпича, экономически целесообразн, выбирать более крупные при возведении массивных поверхностей, например, такими часто бывают несущие поверхности и более мелкие блоки, для перегородок.

Толщина стены

Мы уже рассмотрели параметры, от которых зависит толщина наружных стен из кирпича. Как мы помним, это устойчивость, прочность, теплоизоляционные свойства. Кроме этого, разные виды поверхностей, должны иметь совершенно разную размерность.

Несущие поверхности это, по сути, опора всего здания, они берут на себя основную нагрузку, от всей конструкции, включая вес крыши, на них же влияют внешние факторы, такие как ветра, осадки, кроме того на них давит их собственный вес. Поэтому их грузность, по сравнению с поверхностями ненесущего характера и внутренними перегородками, должна быть наиболее высокой.

В современных реалиях большинству двух и трехэтажных домов, достаточно 25 см толщины или одного блока, реже в полтора или 38 см. Прочности у такой кладки будет достаточно для здания таких размеров, но как быть с устойчивостью. Здесь все гораздо сложнее.

Для того чтобы рассчитать будет ли устойчивость достаточной нужно обратиться к нормам СНиП II-22-8. Давайте рассчитаем, будет ли устойчив наш кирпичный дом, со стенами толщиной в 250 мм, длинною в 5 метров и высотой в 2.5 метра. Для кладки будем использовать материал М50, на растворе М25, расчет проведем для одной несущей поверхности, без окон. Итак, приступим.

По данным из таблицы выше, нам известно, что характеристика нашей кладки относится к первой группе, а также для нее справедливо описание из пункта 7. Табл. 26. После этого, смотрим в таблицу 28 и находим значение β, которое означает допустимое соотношение грузности стены к ее высоте, учитывая, вид используемого раствора. Для нашего примера это значение равно 22.

Далее, нам нужно найти коэффициент k из таблицы 29.

  • k1 для сечения нашей кладки равно 1.2 (k1=1.2).
  • k2=√Аn/Аb где:

Аn – площадь сечения несущей поверхности по горизонтали, расчет прост 0.25*5=1.25 кв. м

Ab – площадь сечения стены по горизонтали учитывая оконные проемы у нас таковые отсутствуют, поэтому k2 = 1.25

  • Значение k4 задано, и для высоты 2.5 м равно 0.9.

Теперь узнав, все переменные можно найти общий коэффициент «k», путем перемножения всех значений. K=1.2*1.25*0.9=1.35 Далее узнаем совокупное значение поправочных коэффициентов и фактически узнаем насколько устойчива рассматриваемая поверхность 1.35*22=29.7, а допустимое соотношение высоты и толщины равно 2.5:0.25=10, что значительно меньше, полученного показателя 29.7. Это означает, что кладка толщиной в 25 см шириной 5 м и высотой в 2.5 метра обладает устойчивость почти в три раза выше, чем это необходимо по нормам СНиП.

Хорошо с несущими поверхностями разобрались, а что с перегородками и с теми что не несут на себе нагрузку. Перегородки, целесообразно делать в половину толщины – 12 см. Для поверхностей, которые не несут на себе нагрузки, так же справедлива формула устойчивости, которую мы рассмотрели выше. Но так как сверху, такая стена будет не закреплена, показатель коэффициента β нужно уменьшить на треть, и продолжить расчеты с уже другим значением.

Кладка в полкирпича, кирпич, полтора, два кирпича

В заключение давайте рассмотрим, как проводится кладка кирпича в зависимости от грузности поверхности. Кладка в полкирпича, самая простая из всех, так как нет необходимости делать сложные перевязки рядов. Достаточно, положить первый ряд материала, на идеально ровное основание и следить за тем, чтобы раствор равномерно ложился, и не превышал 10 мм в толщину.

Читать еще:  Отделка стен спальни под кирпич

Главным критерием качественной кладки сечением в 25 см, является осуществление качественной перевязки вертикальных швов, которые не должны совпадать. Для этого варианта кладки важно от начала до конца соблюдать выбранную систему, которых есть как минимум две, однорядная и многорядная. Отличаются они, способом перевязки и кладки блоков.

Кладка размером в полтора кирпича строится по такой системе: в первом ряду, блоки кладутся перпендикулярно друг другу, таким образом, чтобы с внешней стороны находилась тычковая часть, а с внутренней стороны – ложковая. Следующий ряд кладется, так же, но уже снаружи находится ложковая часть, а внутри тычковая.

Система кладки толщиной в два кирпича, схожа с кладкой в один кирпич, различие в том что горизонтальное сечение поверхности увеличится с 250 до 500 – 520 мм если учитывать размер швов.

Видео «Кирпичные стены»

Видеоролик о возведении домов из кирпича с использованием различных систем кладки. Как правильно утеплить кладку, и какие преимущества у этого материала.

Точка росы в стене — расчет и нахождение

Определить точку росы в стене очень просто. Ниже будет приведен пример, как сделать расчет. Это может сделать каждый, кто заинтересован в вопросе правильного утепления.

Точка росы — это температура, при которой водяной пар начинает конденсироваться.

Что такое точка росы

Точка росы в стене может перемещаться по ее толщине при изменении температур внутри помещения и снаружи. Например, если внутри помещения стабильная температура, а на улице похолодало, то точка росы передвинется по толщине стены ближе к помещению.

Температура предмета, на котором начнет конденсироваться пар, т.е. точка росы, зависит в основном от двух параметров:

  • температуры воздуха;
  • влажности воздуха.

Например, при температуре внутри помещения +20 град и влажности 50%, температура точки росы будет (примерно) +12,9 градусов. Если в помещении появится предмет с такой температурой или ниже, то на нем образуется конденсат.

Например, когда открывается холодильник, то внутри него выпадает роса из поступающего теплого воздуха. Она выглядит как «туман идущий из холодильника».

Если на улице холодно, то где-то в стене будет температура, при которой начнется конденсация пара, и в этой точке будет увлажнение. Если стена тонкая, «холодная», и ее внутренняя поверхность охладится до 12,9 градусов или меньше (при указанных значениях температуры и влажности воздуха), то на ней выпадет роса, она станет мокрой, и очень быстро обзаведется плесенью.

При утеплении стен, конструкций дома, полезно сделать расчет точки росы для наибольших и наименьших значений влажности и температуры, чтобы знать в каких границах пространства будет перемещаться точка росы при изменении этих параметров.

Как выполняется расчет

В расчетах точки росы и толщины утепления не учитываются некоторые параметры, — давление, скорость движения воздуха, плотность материала… Поэтому говорить можно только о приближенных значениях. Но, это не критично, когда речь идет об определении толщины утеплителя.

Для определения точки росы в стене проще всего воспользоваться таблицами готовых примерных значений, и не пытаться самостоятельно заниматься расчетами. Тем более не стоит доверять самодельным программам из интернета, они часто не учитывают параметры и выдают ложные значения, а иногда — и по принципу случайных чисел.


Ниже приведена таблица расчетных значений точки росы в зависимости от температуры воздуха и его влажности. Это примерные значения, так как не учитывается влияние других факторов.

Например, можно определить, что для помещения с температурой внутри +22 градуса, и влажностью 60%, температура при которой будет конденсироваться водяной пар (точка росы) составит 13,9 градусов.

Стена с утеплителем — как определить место конденсации

Решить задачу нахождения точки росы в стене очень просто.
Нужно знать:

  • коэффициент теплового сопротивления стены, ?1, Вт/(м•К);
  • коэффициент теплового сопротивления утеплителя, ?2, Вт/(м•К);
  • толщину стены, h1, м;
  • толщину утеплителя, h2, м;
  • температуру внутри помещения, t1,град. С;
  • влажность воздуха, который будет доходить до точки росы, %;
  • точку росы для данных температуры и влажности, град. С;
  • температуру снаружи, t2, град. С.

В грубом приближении принимается, что температура по толщине каждого слоя будет изменяться линейно.

Искомая величина — температура на границе слоев стены и утеплителя. Когда она будет найдена, можно построить график изменения температур в слое «стена-утеплитель» и по нему отыскать положение точки росы.

Для этого находится отношение теплового сопротивления стены к тепловому сопротивлению утеплителя, исходя из которого, определяется изменение температуры в одном из слоев, что даст возможность узнать температуру на границе.

Рассмотрим на примере.

Пример расчета

Пример условий следующий.
Железобетонная стена h1=36 см, утеплена пенопластом h2=10 см. Коэффициент теплового сопротивления железобетона ?1=1,7 Вт/смК, пенопласта — ?2= 0,04 Вт/смК. Температура внутри t1=+20 град, снаружи t2=-10 градусов. Влажность внутри помещения и снаружи принимается одинаковой — 50%. Согласно таблицы, точка росы составит 9,3 градусов.


Тепловые сопротивления стены и утеплителя определяются как h/ ?, вт/м2К.
В данном примере тепловое сопротивление стены составит 0,36/1,7=0,21 вт/м2К., утеплителя 0,1/0,04= 2,5 вт/м2К.

Отношение тепловых сопротивлений первого слоя ко второму (стены к пенопласту) составит: n=0,21/2,5=0,084.
Тогда перепад температур в первом слое (стена) составит, Т= t1- t2хn = 20-(-10)х0,084=2,52 град.

Соответственно температура на границе слоя будет равна t1-Т=20-2,52=17,48 град.

Теперь мы можем в масштабе построить примерный график перепадов температуры в слое стена — утеплитель и отметим на нем точку росы.

Из примерных расчетов и примерного графика можно узнать главное – точка росы находится в утеплителе, далеко от стены, т.е. даже ухудшение условий, с учетом погрешности расчетов, не повлечет пагубного увлажнения стены.

Пример определения места нахождения температуры конденсации внутри стены

Температура внутри +22 град, снаружи — 15 град (регион севернее), влажность — 50%, точка росы — 11,1 градусов. Стена толщиной 38 см из кирпича (1,5 кирпича +шов+штукатурка принимается все как «кирпичная кладка»).

Коэффициент теплового сопротивления для кирпичной кладки — 0,7 Вт/смК, для минеральной ваты — 0,05 Вт/смК (с учетом ее увлажнения в реальных условиях эксплуатации).

Тепловое сопротивление стены: 0,38/0,7=0,54 вт/м2К., утеплителя 0,1/0,05= 2,0 вт/м2К.
Отношение тепловых сопротивлений первого слоя ко второму составит: n=0,54/2,0=0,27 , а перепад температур в пределах первого слоя будет Т= 22 — (-15)х0,27=9,99 град. Температура на границе слоев: 22- 9,99=12 град.

Как видим, ситуация «впритык». С повышением влажности, что обычное явление, с падением температуры внутри помещения, или в холодную зиму, точка росы будет «гулять» внутри стены.

Читать еще:  Внутренняя отделка стен обоями под кирпич

Такое утепление для относительно «теплой» кирпичной стены, уже будет считаться недостаточным, и по положению точки росы и по нормативным значениям теплопотерь, через ограждающие конструкции.

Точку росы можно сдвинуть и нагревом помещения с помощью внутреннего отопления и его осушением. Естественно, что это крайняя мера, которую применяют лишь когда пришла пора «сушить стены».
Точка росы в стене — расчет и нахождение

Какие значения нужно принимать для расчета

Обычно температура внутри помещения принимается 22 градуса, чаще у пола она ниже, а под потолком достигает 27 градусов. Для центральных регионов считается минимальной температура снаружи помещений -15 градусов, (допускается кратковременные понижения температуры до -20 — -25 градусов).

Для южных регионов — -7 градусов, с кратковременным понижением -15 — -20 градусов.
(Минимальную температуру можно выбрать самостоятельно, — какая температура держится зимой постоянно? До каких значений она опускается кратковременно?)

Влажность воздуха в помещении обычно принимается средняя (но не маленькая) — 50%,. Здесь обычно имеется некоторый запас, так как часто зимой воздух в помещении суше, из-за активно работающего отопления, — 30 – 40%. Но во многих домах борются с сухостью воздуха, устанавливая увлажнители и разводя растения. Оптимальная же влажность – 50%, она же и расчетная.

Осенью и весной для пропускных утеплителей пар будет идти в обратном направлении — с улицы. Для расчета на «демисезон» по паропроницаемым утеплителям, влажность нужно принимать порядка 90%.

Где должна находиться точка росы

Утепление ограждения считается «нормальным» только когда точка росы в холодное время в основном (!) находится в утеплителе и не смещается в стену.

Что значит «в основном»?
При максимальных отрицательных температурах, которые длятся обычно несколько дней, неделю, и наступают периодически, точка росы может смещаться и в стену.

Для стены из плотных тяжелых материалов, в этом нет ничего опасного. Но для стены из пористых материалов, которые как обычно очень хорошо пропускают пар и впитывают влагу, появление точки росы должны быть коротким, особенно когда они сочетаются с утеплителями-пароизоляторами.

Такие стены требуют наибольшего утепления, особенно с учетом того, что они сами по себе теплые. Что бы сместить точку росы потребуется в 2 раза больше утеплителя. С паропрозрачными утеплителями, они сочетаются намного лучше, так как здесь можно осуществить вывод влаги, но только при условии отличной вентиляции утеплителя.

Приведены наглядные графики температур для различных схем утепления. Точка росы примерно указана как 16 градусов, достигается, когда внутри дома особо комфортная обстановка +25 градусов, 55 – 60 % влажности.

  • 1 — стена без утеплителя;
  • 2 — недостаточный слой утепления — точка росы находится внутри стены. Ее постоянное нахождение вызовет намокание неплотной стены, нездоровую атмосферу, опасность разрушения материала, если стена слой утепления имеет большее сопротивление движению пара, чем сама стена (неправильное утепление);
  • 3 — достаточное утепление, точка росы в утеплителе (основное время), нормальное сохранение материалов стены и тепло в доме, если тепловое сопротивление конструкции не меньше нормативного, ведь для очень холодных стен сместить точку росы из них можно и маленьким слоем утепления;
  • 4 — внутреннее утепление – худшее решение. Точка росы на поверхности стены или близка к этому, влечет намокание стены, и ущерб здоровью жильцов, мокрое замораживание и разрушение конструкций. Применяется в безвыходных ситуациях при условии сплошного закрытия стены утеплителем-пароизолятором, который и предотвращает проникновение пара к точке росы. Т.е. образование конденсата невозможно из-за влажности близкой к 0.

В нормативах указаны тепловые сопротивления ограждающих поверхностей для конкретных климатических зон. Этот значением уменьшать запрещает нам государство.

Чаще норматив требует меньшую толщину утеплителя, чем та, что нужна для смещения точки росы в утеплитель. Поэтому подбирать утеплитель под все поверхности в принципе желательно и по условию смещения точки росы в утеплитель.

Эти значения сравниваются с нормативным требованием, а принимается, как правило, еще большее значение, кратное толщине утеплителей, который находится в продаже.

buildingbook.ru

Информационный блог о строительстве зданий

  • Home
  • /
  • Тепловая защита зданий
  • /
  • Пример расчёта толщины утепления стены

Пример расчёта толщины утепления стены

Пример расчёта толщины теплоизоляции стены

Необходимые табличные данные и общие сведения о расчёте теплоизоляции стены вы можете найти в статье Расчёт толщины теплоизоляции.

Также табличные значения можно узнать из ссылочных материалов в конце статьи.

Для удобства расчёта скачайте программу в Excel в конце статьи.

Рассмотрим для примера подбор теплоизоляции стены.

Исходные данные:

Район строительства — г. Уфа;

Стена выполнена под штукатурку, пирог выглядит следующим образом:

Толщина несущей стены 380 мм (кладка в полтора кирпича), материал несущей стены — кирпич полнотелый керамический;

Утеплитель — минеральная вата;

Тип здания — жилое.

Климатические условия

Т.к. здание жилое, то среднюю температуру наружного воздуха, а также продолжительность отопительного периода принимаем согласно таблице 3.1 СП 131.13330.2012 для периода со среднесуточной температурой наружного воздуха не более 8 °С.

Согласно СП 131.13330.2012 Строительная климатология, таблице 3.1 для г.Уфа:

продолжительность отопительного периода zот = 209 дней;

средняя температура наружного воздуха отопительного периода tот =-6 °С (минус 6);

по карте зон влажности приложения В СП 50.13330.2012 определяем что г.Уфа находится в сухой зоне влажности:

Температура и влажность внутри помещения

Согласно ГОСТ 30494-2011 Здания жилые и общественные. Параметры микроклимата в помещениях. Таблице 1:

расчётная внутренняя температура tв = 21 °С (минимальная температура для диапазона 21-23 °С т.к. температура самой холодной пятидневки с обеспеченностью 0,92 для г.Уфа -33°С);

влажность воздуха — 60%, что согласно таблице 1 СП 50.13330.2012 Тепловая защита зданий является нормальным режимом.

Таблица 1 (ГОСТ 30494-2011) — Оптимальные и допустимые нормы температуры и относительной влажности воздуха в обслуживаемой зоне помещений жилых зданий и общежитий

Период годаНаименование помещенияТемпература воздуха, °СОтносительная влажность, %
оптимальнаядопустимаяоптимальнаядопустимая, не более
ХолодныйЖилая комната20-2218-24 (20-24)45-3060
Жилая комната в районах с температурой наиболее холодной пятидневки (обеспеченностью 0,92) минус 31 °С и ниже21-2320-24 (22-24)45-3060
Кухня19-2118-26Не нормируетсяНе нормируется
Туалет19-2118-26Не нормируетсяНе нормируется
Ванная, совмещенный санузел24-2618-26Не нормируетсяНе нормируется
Помещения для отдыха и учебных занятий20-2218-2445-3060
Межквартирный коридор18-2016-2245-3060
Вестибюль, лестничная клетка16-1814-20Не нормируетсяНе нормируется
Кладовые16-1812-22Не нормируетсяНе нормируется
ТеплыйЖилая комната22-2520-2860-3065
Примечание — Значения в скобках относятся к домам для престарелых и инвалидов.
Читать еще:  Сколько нужно кирпича для облицовки стены

Таблица 1 (СП 50.13330.2012) — Влажностный режим помещений зданий

РежимВлажность внутреннего воздуха, %, при температуре, °С
до 12свыше 12 до 24свыше 24
СухойДо 60До 50До 40
НормальныйСвыше 60 до 75Свыше 50 до 60Свыше 40 до 50
ВлажныйСвыше 75Свыше 60 до 75Свыше 50 до 60
МокрыйСвыше 75Свыше 60

Теплопроводность элементов ограждения

Основными теплоизолирующими материалами в данной конструкции являются кирпичная стена и утеплитель. Декоративная штукатурка, клеевой слой имеют малую толщину, поэтому существенно не влияют на общее термическое сопротивление стены и мы не учитываем эти слои в расчёте.

Т.к. согласно карте зон влажности климат в Уфе сухой, а влажность воздуха внутри помещений нормальная, то по таблице 2 СП 50.13330.2012 условия эксплуатации ограждающих конструкций принимаются за «А».

Таблица 2 (СП 50.13330.2012) — Условия эксплуатации ограждающих конструкций

Коэффициент теплопроводности кирпичной кладки по таблице Т.1 СП 50.13330.2012 при условиях эксплуатации А равен:

Плотность утеплителя для штукатурного фасада должна быть примерно 150 кг/м³, Коэффициент теплопроводности утеплителя по таблице Т.1 СП 50.13330.2012 при условиях эксплуатации А равен:

Если имеются данные испытаний утеплителя конкретного производителя, то можно воспользоваться ими.

Как видим минеральная вата более чем в 16 раз эффективнее кирпичной кладки, поэтому не имеет смысла увеличивать толщину кладки для того, чтобы добиться необходимого термического сопротивления. Толщина кирпичной кладки подбирается исходя из расчёта на прочность и устойчивость.

Расчёт необходимой толщины утепления

Для начала определяем ГСОП по формуле 5.2 СП 50.13330.2012 Тепловая защита зданий:

По формуле таблицы 3 СП 50.13330.2012 определяем требуемое термическое сопротивление ограждающей конструкции

где а=0,00035, b=1.4 (для стен здания, параметры взяты из таблицы 3 СП 50.13330.2012)

R тр =0.00035*5643+1.4=3.37505 (м 2 ∙ °С)/Вт.

Мы вычислили требуемое термическое сопротивление, теперь постепенно увеличивая толщину утепления необходимо добиться чтобы фактическое термическое сопротивление было не меньше этого числа.

Термическое сопротивление участка стены определяем по формуле Е.6 СП 50.13330.2012:

где αв = 8,7 Вт/(м 2 ∙ °С) коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, Вт/(м 2 ∙ °С), принимаемый согласно таблице 4 СП 50.13330.2012;

αн = 23 Вт/(м 2 ∙ °С) коэффициент теплоотдачи наружной поверхности ограждающей конструкции, Вт/(м 2 ∙ °С), принимаемый согласно таблице 6 СП 50.13330.2012;

Rs — термическое сопротивление слоя однородной части фрагмента, (м 2 ∙ °С)/Вт, определяемое для невентилируемых воздушных прослоек по таблице Е.1 СП 50.13330.2012, для материальных слоев по формуле Е.7 СП 50.13330.2012

R кирп = 0,38/0,7=0,543 (м 2 ∙ °С)/Вт.

Без учета утеплителя термическое сопротивление стены равно:

Таким образом термическое сопротивление слоя теплоизоляции должно быть не менее RтрR0 =3,375-0,7=2,675 (м 2 ∙ °С)/Вт.

Из формулы Е.7 СП 50.13330.2012 можем вычислить минимальную толщину теплоизоляции:

δ тепл ≥R *λ тепл =2,675*0,043=0,115 м.

Т.к. 115 мм утеплителя не бывает, то принимаем толщину утеплителя 120 мм.

Теперь сделаем проверочный расчёт по формуле Е.6 СП 50.13330.2012:

R 0 = 1/8,7+0,38/0,7+0,12/0,043+1/23=3,49 (м 2 ∙ °С)/Вт, что больше требуемых 3,375.

Для простоты расчёта я сделал не большую программку в Excel.

В ней вы найдете также справочную информацию: расчётные коэффициенты и температуры, карта зон влажности.

This article has 2 Comments

не могу скачать программу в excel , пишет К сожалению! Эта страница не найдена.

Спасибо за проделанную работу!
Весьма доступно для понимания и достаточно информации для выбора вариантов утепления.

Расчет кирпичной перегородки на сейсмику 7 балов

Расчет перегородки при сейсмической нагрузке

Кирпичная перегородка толщиной 120 мм длиной 6000 мм, высотой 5000 мм. Перегородка выполнена из кирпича марки М75 на растворе марки М50 армированная арматурой ø5 ВрI , оштукатурена с 2-х сторон по 20 мм, расчетная сейсмичность 7 баллов.

Определение допустимой высоты стены.

Отношение высоты к толщине кирпичной перегородки не должны превышать указанных в п. 9.17-9.20 СП 15.13330.2012

Согласно п. 9.19 отношение β может быть увеличено на коэффициент К=1.2 по таблице 30

h=120 мм – толщина кирпичной перегородки

H=5000≤βh=25∙1,2∙120=3600 – условие не выполняется, необходимы раскрепляющие стойки.

При L≤kβh=1,2∙25∙120=3600 высота кирпичной перегородки неограниченна.

Примем шаг раскрепляющих стоек 3000 мм.

    Определение усилий в стене от действия местной сейсмической нагрузки.

Величину местной сейсмической нагрузки определяем по формулам (1) и (2) СП14.13330.2014

K = 1,5 – коэффициент, учитывающий назначение сооружения и его ответственность, принимаемый по таблице 3 СП 14.13330.2014.

К1 =0,4 – коэффициент, учитывающий допускаемые повреждения зданий и сооружений, принимаемый по таблице 4 СП14.13330.2014.

— значение сейсмической нагрузки для i-й формы собственных колебаний здания или сооружения, определяемое в предположении упругого деформирования конструкции по формуле.

Масса кирпичной кладки с учетом оштукатуривания, определенная с учетом расчетных нагрузок на конструкцию согласно п 5.1 СП14.13330.2014.

– коэффициент надежности по ответственности

– коэффициент надежности по нагрузки для кирпичной кладки

– коэффициент надежности по нагрузки для штукатурного слоя

– коэффициент сочетания нагрузок

– значение ускорения в уровне основания для расчетной сейсмичности 7 баллов.

=3,8 – произведение коэффициентов принято по табл. 4 Инструкции по определению расчетной сейсмической нагрузки для зданий и сооружений( второй этаж 2-ух этажного здания).

S=1,5∙0,4∙1042=714 Н⁄м 2

Расчетную схему стены принимаем как шарнирно опертую балку в направлении короткого пролета

Расчетный изгибающий момент формуле

Определение несущей способности кладки.

Расчет кладки без учета штукатурного слоя. Изгибающий момент, действующий на 1 м кладки,

M=804 Нм = 8040 кг∙см.

При расчете, в запас прочности, ведем расчет без учета работы арматуры в сжатой зоне сечения. Подбор сечения арматуры проводим по указаниям п 3.19 пособия к СП 52-101-2003 как для прямоугольного сечения b=1м, h=12 см, h0=10 см.

На основании пункта 7.30 СП 15.13330.2012 исходя из минимального процента армирования( не менее 0,1%) определяем:

Примем армирование ø5ВрI каждые 3 ряда кладки, на 1 м кладки получаем 8∙0,196=1,568с м 2

По таблице 6.14 СП 63.13330.2012 принимаем расчетное сопротивление арматуры из стали класса Вр500, Rs=415 Мпа = 4150 кг/см 2

По таблице 2 СП 15.13330.2012 принимаем расчетное сопротивление кирпичной кладки RK=1,3Мпа = 13 кг/см 2

По формуле 3.16 пособия к СП 52-101-2003 определяем высоту сжатой зоны:

– условие выполняется, прочность кладки обеспечена

    Расчет раскрепляющих стоек.

Расчетную схему стойки примем как шарнирно опертую балку. Определение нагрузок на балку

1) При шаге раскрепляющих стоек 3 м высота кирпичной перегородки толщиной 120 мм неограниченна. Минимальный профиль раскрепляющих стоек в зависимости от высоты кирпичной перегородки приведен в таблице

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector