Hist-of-rus.ru

Строй журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Значения естественный угол откоса

Техническая механика

Трение — основные понятия, законы и зависимости

Понятие трения

Как известно, в природе не существует абсолютно гладких и абсолютно твердых тел, поэтому при перемещении одного тела по поверхности другого возникает сопротивление, которое называется трением.

Трение – явление сопротивления относительному перемещению, возникающее между двумя телами в зонах соприкасания поверхностей по касательной к ним.

Трение – явление чрезвычайно распространенное в природе и имеющее большое значение. При этом оно может выполнять и полезные, и вредные функции. На трении основана работа фрикционных и ременных передач, муфт, наклонных транспортеров, прокатных станов, тормозных устройств и т. п.
Трение обеспечивает сцепление тел с земной поверхностью и, следовательно, работу машин, тракторов и другой транспортной самоходной техники. При отсутствии трения мы не могли бы ходить по земле, поскольку наши ноги скользили бы и разъезжались в разные стороны, как у неумелого конькобежца на гладком льду.

Наряду с полезными свойствами, трение является во многих устройствах и механизмах вредным сопротивлением, которое отнимает львиную долю мощности и энергии у машин. Для уменьшения трения в механизмах конструкторам приходится применять различные приемы и способы, чтобы снизить непродуктивные потери энергии.

Трение классифицируют по характеру движения, в результате которого оно возникает. Различают трение покоя, трение скольжения, трение качения и трение качения с проскальзыванием . Очевидно, что последний из перечисленных видов трения является комбинацией трения скольжения и трения качения.

Трением покоя называется трение двух тел при начальном (бесконечно малом) относительном перемещении в момент перехода от состояния покоя к состоянию относительного движения. Это явление можно объяснить шероховатостью поверхностей соприкасающихся тел, а также их деформацией, вызванной взаимным давлением друг на друга.
Кроме того, при таком взаимном давлении (контакте) между телами, на их поверхностях возникают силы молекулярного сцепления. Для того, чтобы начать взаимное перемещение тел, необходимо преодолеть все эти факторы, обуславливающие трение покоя.

Трением движения называется трение двух тел, находящихся в относительном движении. Рассмотрим основные виды трения в зависимости от характера относительного движения тел.

Трение скольжения

Трением скольжения называется трение движения, при котором скорости тел в точке касания различны по значению и (или) направлению.
Трение скольжения, как и трение покоя, обусловлено, прежде всего, шероховатостью и деформацией поверхностей, а также наличием молекулярного сцепления прижатых друг к другу тел. Трение скольжения сопровождается изнашиванием, т. е. отделением или остаточной деформацией материала, а также нагревом трущихся поверхностей тел (остаточной называется деформация, не исчезающая после прекращения действия внешних сил).
Трение характеризуется силой трения.
Сила трения есть сила сопротивления относительному перемещению двух тел при трении.

Рассмотрим тело, лежащее на горизонтальной шероховатой плоскости (см. рисунок 1) .
Сила тяжести G уравновешивается нормальной реакцией плоской поверхности N . Если к телу приложить небольшую движущую силу P , то оно не придет в движение, так как эта сила будет уравновешиваться силой трения Fтр , которая является, таким образом, составляющей реакции опорной плоскости, направленной вдоль плоскости в противоположную перемещению сторону.

Если постепенно увеличивать сдвигающую силу P , то до определенного ее значения тело будет оставаться в покое, а затем придет в движение.
Очевидно, что сила трения в состоянии покоя может изменяться в зависимости от степени микросмещения может изменяться от нуля до какого-то максимального значения F max тр , причем в промежутке между нулем и максимальным значением сила трения Fтр по модулю всегда равна сдвигающей силе P .
Максимальное значение сила трения покоя имеет в момент начала относительного движения. Это значение называется наибольшей силой трения покоя или просто силой трения покоя.

Сила трения всегда направлена в сторону, противоположную направлению относительного движения тела.

В XVIII веке французские ученые Гийом Атонтон (1663-1705) , а затем Шарль Огюстен Кулон (1736-1806) провели фундаментальные исследования в области трения, и на основе их сформулировали три основных закона трения скольжения, которые обычно называют законами Кулона.

1-й закон Кулона

Cила трения не зависит от величины площади трущихся поверхностей.

Первый закон можно объяснить с помощью следующих умозаключений. Если площадь трущихся поверхностей увеличится, то увеличится и количество сцепляющихся неровностей, но уменьшится давление на опорную поверхность, которое обратно пропорционально площади контакта тел. Поэтому сопротивление относительному перемещению останется прежним.

2-й закон Кулона

Максимальная сила трения прямо пропорциональна нормальной составляющей внешних сил, действующих на поверхности тела.

Второй закон Кулона говорит о том, что если увеличится нормальная составляющая внешних сил, действующих на поверхности тела (иначе говоря, увеличится сила нормального давления или реакции), то во столько же раз возрастет максимальная сила трения.
Поскольку зависимость эта прямо пропорциональная, можно выделить коэффициент, характеризующий ее пропорциональность. Этот коэффициент называется коэффициентом трения скольжения , и определяется он, как отношение силы трения Fтр к нормальной составляющей N внешних сил, действующих на поверхности тела. Обозначается коэффициент трения скольжения f .
При наибольшей силе трения покоя коэффициент трения называют коэффициентом сцепления .

Читать еще:  Аксессуары для пластиковых откосов

В результате второй закон трения скольжения можно сформулировать так: сила трения равна коэффициенту трения скольжения, умноженному на силу нормального давления или реакции.

Очевидно, что коэффициент трения скольжения – величина безразмерная.

Нормальная реакция N опорной поверхности и сила трения Fтр дают равнодействующую R , которая называется полной реакцией опорной поверхности (см. рисунок 2) .

Полная реакция R составляет с нормалью к опорной поверхности некоторый угол. Максимальное значение этого угла (достигает в момент начала относительного движения) называется углом трения и обозначается φ .
Из рисунка 2 очевидно, что

т. е. коэффициент трения скольжения равен тангенсу угла трения.

Если коэффициент трения скольжения одинаков для всех направлений движения, то множество (геометрическое место) полных реакций образует круговой конус, который называется конусом трения (см. рисунок 2) .
Если для разных направлений движения коэффициент трения неодинаков (например, при скольжении по дереву вдоль волокон и поперек волокон), то конус трения будет некруговым (несимметричным).

Свойство конуса трения заключается в том, что для равновесия тела, лежащего на шероховатой поверхности, равнодействующая приложенных к нему активных сил должна проходить внутри конуса трения.

Действительно, если равнодействующую P активных сил, приложенных к телу, разложить на составляющие P2 (движущая сила) и P2 (сила нормального давления) , то

По второму закону трения скольжения

Следовательно, при α будет P1 и движение окажется невозможным.

3-й закон Кулона

Сила трения зависит от материала тел, состояния трущихся поверхностей и рода смазки.

Согласно третьему закону трения скольжения, коэффициент трения скольжения зависит от материалов трущихся тел, качества обработки их поверхности (степени шероховатости), рода и температуры смазки. В зависимости от наличия между сопрягаемыми поверхностями слоя смазки трение подразделяется на два вида: трение без смазочного материала (сухое трение) и трение в условиях смазки.

Коэффициент трения скольжения определяют опытным путем; значения его для различных условий приведены в справочниках. Примеры коэффициентов трения для некоторых материалов приведены ниже.

  • Металл по металлу без смазки . 0,15. 0,30
  • То же, со смазкой . 0,10. 0,18
  • Дерево по дереву без смазки . 0,40. 0,60
  • Кожа по чугуну без смазки . 0,30. 0,50
  • То же, со смазкой . 0,15
  • Сталь по льду . 0,02

Коэффициент трения скольжения при движении обычно меньше, чем при покое, и в первом приближении не зависит от скорости относительного перемещения тел.

Методы решения задач статики при наличии трения остаются такими же, как и при отсутствии его, причем в уравнения равновесия обычно вводят максимальные значения сил трения.

Трение на наклонной поверхности

Рассмотрим тело, лежащее на шероховатой наклонной плоскости, составляющей угол α с горизонтальной плоскостью (см. рисунок 3) .
Разложим силу тяжести тела G на составляющие G1 и G2 , параллельную и перпендикулярную наклонной плоскости. Модули этих составляющих определим, используя тригонометрические зависимости:

Составляющая G1 стремится сдвинуть тело вдоль наклонной плоскости. Полностью или частично эта составляющая уравновешивается силой трения; согласно второму закону трения скольжения, ее максимальное значение равно:

Fтр = fN = fG cosα , где f – коэффициент трения скольжения тела по наклонной плоскости.

Для того, чтобы тело, лежащее на наклонной плоскости, находилось в равновесии, движущая сила G1 должна быть по модулю равна силе трения Fтр ,т. е.

G sinα = fG cosα или tgα = f = tgφ , откуда следует, что α = φ .

Если угол, который наклонная плоскость составляет с горизонтом, будет равен углу трения, то тело, лежащее на наклонной плоскости ,будет под действием собственной силы тяжести либо равномерно скользить вниз, либо находиться в состоянии покоя (что, собственно, одно и то же).

Для того, чтобы тело, лежащее на наклонной плоскости, заведомо не скользило вниз под действием собственной силы тяжести, должно быть соблюдено условие α .

Наклонной плоскостью с переменным углом наклона к горизонту пользуются для экспериментального определения угла трения φ и коэффициента трения f (см. рисунок 4а) .

Определим модуль силы Р , параллельной наклонной плоскости, в случае равномерного перемещения тела вверх по шероховатой наклонной плоскости (см. рисунок 4б) . Спроецируем силы, действующие на тело, на ось x . Составим уравнение равновесия:

ΣX = 0; P – G sinα – Fтр = 0 .

Так как Fтр = fG cosα , то P = G sinα + fG cosα или после преобразований: P = G (tgα + f) .

Определим модуль горизонтальной силы Р , которую надо приложить к телу для равномерного перемещения его вверх по шероховатой наклонной плоскости (см. рисунок 5) .

Применим геометрическое условие равновесия плоской системы сил (размерами тела пренебрегаем) и построим замкнутый силовой многоугольник, соответствующий уравнению равновесия:

G + P + N + Fтр = 0 .

Из треугольника abc имеем: P = Gtg(α + φ) .

Этот случай движения имеет место при взаимном перемещении винта и гайки с прямоугольной резьбой, так как резьбу винта можно рассматривать как наклонную плоскость, угол наклона которой равен углу подъема винтовой линии.

Читать еще:  Расчет объемов котлована с откосами пример

Трение в резьбе, имеющей треугольный или трапецеидальный профиль, подобно трению в клинчатом ползуне. Поэтому рассмотрим клинчатый ползун с углом заострения 2β , нагруженный вертикальной силой Q (см. рисунок 6) . Определим силу P , необходимую для равномерного перемещения ползуна вдоль горизонтальных направляющих, если коэффициент трения скольжения равен f .

Составим два уравнения равновесия ползуна:

ΣX = 0; P – 2Fтр = 0;
ΣY = 0; 2Nsinβ – Q = 0 ,

где Fтр – сила трения на каждой грани ползуна; N – нормальная реакция направляющей.

Решая эту систему уравнений и учитывая, что Fтр = fN , получим:

где f’ = f/sinβ – приведенный коэффициент трения.

Соответствующий этому приведенному коэффициенту угол трения обозначим φ’ и назовем приведенным углом трения , тогда:

Очевидно, что f’> f , следовательно, при прочих равных условиях трение в клинчатом ползуне больше трения на плоскости.

Понятие приведенного коэффициента трения условно, так как он изменяется в зависимости от угла заострения клинчатого ползуна.

По аналогии с движением тела вверх по наклонной плоскости под действием горизонтальной силы для равномерного перемещения клинчатого ползуна по направляющим, наклоненным к горизонту под углом α , нужно приложить горизонтальную силу равную

Трение в крепежной метрической резьбе подобно трению клинчатого ползуна с углом заострения 2β = 120˚ , для трапецеидальной резьбы угол 2β = 150˚ .

С трением связано понятие угла естественного откоса — наибольшим углом между наклонной плоскостью и горизонтом, при котором сыпучее тело удерживает свои частицы на поверхности, без их движения (осыпания) вниз. Угол естественного откоса сыпучего тела равен углу трения между его частицами. Этот угол приходится принимать во внимание, например, при различных земляных работах на уклонах и скатах.

Развитие оврага

В развитии первичного оврага выделяют 4 основные стадии.

Первая стадия — образование промоины, или рытвины, глубиной 30 — 50 см. Характерный признак промоины — параллельность продольного профиля ее дна поверхности склона, на котором образовался овраг. В плане овраг имеет линейную форму; поперечное сечение — треугольное или трапециевидное. На распаханных площадях и рыхлых грунтах первая стадия протекает очень быстро (1 — 3 года).

Вторая стадия — образование вершинного обрыва. Берег балки, как более крутой, чем прилегающий к ее бровке склон водосбора, размывается в глубину быстрее, чем склон, поэтому ниже бровки балки образуется обрыв. Основание обрыва подмывается падающим потоком воды. Стена обрыва обрушивается, глыбы грунта размываются водным потоком и уносятся течением. Высота обрыва над дном оврага в его вершине составляет от 2 до 10 м. Овраг растет в длину обвалом своей вершины, навстречу водному потоку, врезаясь в прилегающий к балке склон. Одновременно происходит его углубление, но устье оврага еще не достигает уровня дна балки. Овраг как бы «висит» над дном балки. Продольный профиль дна оврага имеет вид вогнутой линии и сильно отличается от профиля поверхности размываемых берега балки и прилегающих склонов. Откосы оврага обнажены, обрывисты и неустойчивы. Осыпь грунта у их основания не задерживается, так как уносится водным потоком. Овраг в этой стадии растет как в глубину, так и в ширину. По мере углубления дна оврага его устье опускается все ниже и ниже и, наконец, достигает уровня дна балки. Овраг вступает в новую стадию развития.

Третья стадия — выработка профиля равновесия. Она начинается, когда устье оврага опускается до уровня дна балки, т. е. достигает местного базиса эрозии. Дно оврага выше устья продолжает углубляться до тех пор, пока продольный его уклон станет соответствовать уклону профиля равновесия для данного грунта. При этом уклоне дна скорость водного потока настолько мала, что его сила будет уравновешиваться сопротивляемостью грунта. При такой скорости водный поток обычно не в состоянии переносить крупные частицы твердого стока, поэтому для профиля равновесия характерно отложение по дну оврага наносов. В начале этой стадии развития наносы откладываются в устье оврага, затем зона отложения увеличивается, продвигаясь к вершине оврага по мере углубления дна и уменьшения его уклона. Овраг в этой стадии растет в глубину, ширину и длину. Рост в ширину идет в результате подмыва и обрушивания откосов оврага, поскольку водный поток течет по дну не прямолинейно, а извилисто.

Четвертая стадия — затухание роста оврага. Эта стадия начинается после выработки профиля равновесия дна оврага. Дальнейшего углубления дна не происходит. Продолжается рост в ширину вследствие подмыва и обрушивания откосов, в результате чего дно оврага расширяется. Постепенно откосы оврага достигают угла естественного, устойчивого для данного грунта, откоса и зарастают растительностью. Овраг превращается в лощину или балку.

Читать еще:  Пластиковые откосы пвх сколько стоят

На достаточно длинных склонах можно наблюдать все стадии развития на одном и том же овраге, поскольку они в перечисленной последовательности пространственно перемещаются навстречу течению водного потока: промоина, обрыв, участки с профилем равновесия, участки затухания (у устья). Когда вершина оврага достигнет водораздела, дальнейший рост в длину прекращается, обрыв в его вершине сполаживается. Рост оврага можно остановить на любой стадии развития прекращением поступления в него воды или закреплением вершины и дна водосбросным сооружением.

В первичный овраг вода поступает на первых двух стадиях развития в основном через его вершину, а в последующем и через стокоударную бровку, т. е. обращенную к верхней части склонов водосбора. Эту особенность надо учитывать при закреплении и облесении таких оврагов.

Рассмотрим причины образования и особенности роста вторичных оврагов. Описание стадий развития первичных оврагов показало, что водный поток, обладающий одной и той же разрушительной силой, вырабатывает такой продольный профиль дна оврага, который соответствует профилю равновесия между размывом и отложением грунта. В результате овраг затухает и превращается в балку.

Можно предположить, что продольные профили дна всех звеньев гидрографической сети, которая выработалась в процессе геологической эрозии, соответствует профилю равновесия для нормального режима стока, т. е. ненарушенного хозяйственной деятельностью человека. Это тем более вероятно, что до хозяйственного освоения земель все звенья гидрографической сети были покрыты лесной или травянистой растительностью в зависимости от зоны. Многие из них и теперь покрыты растительностью.

В настоящее время значительная часть гидрографической сети имеет донные овраги. Причиной их образования, по-видимому, является несоответствие нового, увеличенного поверхностного стока прежнему профилю равновесия дна балок, лощин и пр. Их уклоны не изменились, поэтому и скорость течения воды по их дну не могла измениться. Следовательно, увеличение кинетической энергии потока можно объяснить при постоянной скорости только увеличением массы воды, стекающей со склонов водосборной площади. Повышенный поверхностный сток нельзя объяснить увеличением количества атмосферных осадков, так как в историческое время климат земли не изменился. Увеличение поверхностного стока можно объяснить только неправильным использованием земли, вырубкой лесов и усиленной распашкой земли с одновременным ухудшением водно-физических свойств почвы.

Рост донных оврагов начинается, по сути дела, с выработки нового профиля равновесия, соответствующего новому повышенному стоку воды. Принципиально не отличаясь от третьей стадии развития первичных оврагов, рост вторичных оврагов имеет и ряд особенностей. Сначала идет разрушение («обновление») дна, а затем и берегов сети. Образование донного оврага может начаться в балочном звене, а затем в лощинах и ложбинах, впадающих в эту балку, по мере продвижения вершины донного оврага к верховьям балки. Этот процесс может начаться и одновременно в нескольких звеньях балочной системы или только в вершине балки. Все будет зависеть от того, в какое звено гидрографической сети происходит наиболее усиленный сброс поверхностного стока воды.

Третья стадия развития донного оврага заканчивается полным обновлением дна и берегов древней гидрографической сети. Эти овраги, как правило, многовершинные, по числу прежних лощин и ложбин. Четвертая стадия — затухание оврага, протекает, как выше было описано. Овраг постепенно превращается в новую балку. Образно говоря, если овраги являются свежими ранами на теле земли, то балки — это рубцы от старых ран. Особенностью роста донных оврагов является то обстоятельство, что они наследуют от прежней гидрографической сети их водосборные площади. В эти овраги вода поступает не только через вершину, но и с прилегающих склонов водосбора через бровки балок (лощин). При усиленном стоке воды, который собственно и вызывает появление вторичного оврага, берега балок еще до их обновления прорезаются струйчатыми размывами.

Рост вторичного оврага

Особенности геологического строения той или иной местности сказываются на скорости прохождения отдельных стадий и внешнем облике оврагов.

Наиболее быстро идет образование оврагов на лессовых отложениях и рыхлых грунтах.

Чем древнее земледельческие районы, тем больше там оврагов. При росте оврагов теряется много освоенной земли. Но вред от оврагов не только в этом. Они снижают уровень грунтовых вод, увеличивают площадь испаряющей поверхности и тем самым вызывают иссушение территории, на что указывал еще В. В. Докучаев. Кроме того, овраги, расчленяя пашню на мелкие клочки, делают ее неудобной для обработки. Вынос твердого стока из оврагов и отложение его в поймах рек приводят к обмелению рек и заболачиванию пойм. Овражная эрозия наносит большой и почти непоправимый ущерб земле. Это вызывает острую необходимость изучения данного явления и разработки мер защиты земли от разрушения.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector