Hist-of-rus.ru

Строй журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Коэффициент заложения откоса для песка

Расчет устойчивости откосов подтопляемых насыпей

Потеря устойчивости откосов высоких подтопляемых пойменных насыпей и глубоких выемок на спусках в долину реки является одним из наиболее распространенных видов деформаций земляного полотна на мостовых переходах. Поэтому проверка устойчивости откосов земляного полотна на подходах к мостам — обычная задача для инженера-дорожника, а выполняемые при этом геотехнические расчеты — обязательная часть обоснования проектов мостовых переходов.

При расчетах устойчивости откосов исходят из следующих возможных схем их обрушения:

если грунт земляного полотна однороден или отдельные его слои мало отличаются по прочностным показателям, смещение оползающего массива происходит по образующейся в грунте криволинейной поверхности скольжения;

если грунт земляного полотна имеет неоднородные напластования (откосы глубоких выемок на спусках в долину реки), резко различающиеся по прочностным показателям, смещение грунтовых массивов может происходить по фиксированным поверхностями раздела между слоями.

Наиболее опасными и часто встречающимися случаями являются обрушения откосов по криволинейным поверхностям скольжения. Как показывают наблюдения, откосы насыпей обрушаются по поверхностям скольжения, близким по Форме к кругло-цилиндрическим (рис. 17.6).

Рис. 17.6. Положения опасных кривых скольжения при различных грунтах основания:
а -устойчивых; б -слабых; Lск — расчетная длина скольжения; z — глубина трещины

Обрушению откоса всегда предшествует появление вертикальной трещины обрушения, параллельной бровке земляного полотна (трещины Терцаги). В зависимости от свойств грунтового основания насыпи возможны два вида обрушения:

при достаточно устойчивых грунтах основания поверхность обрушения обычно проходит через подошву откоса насыпи (см. рис. 17.6, а);

в случае слабого грунтового основания поверхность обрушения может заходить в пределы слабого слоя и распространяться за пределы подошвы откоса насыпи (см. рис. 17.6, б).

Устойчивость откоса насыпи оказывается обеспеченной лишь в том случае, если сумма всех сил. сдвигающих массив обрушения (или их моментов относительно оси вращения), оказывается меньше сил (или их моментов), его удерживающих, т.е. при коэффициенте устойчивости Кр ³ 1. Однако, учитывая некоторую погрешность методов расчета, погрешность исходных данных, неучет фактических условий работы (например, динамические воздействия подвижного состава) и т.д., с инженерной точки зрения, устойчивость откоса считается обеспеченной, если расчетный коэффициент устойчивости (17.6) оказывается равным нормативному Кн, или больше его:

(17.6)

Нормативный коэффициент устойчивости определяют:

К1 — коэффициент, учитывающий степень достоверности данных о характеристиках грунтов: К1 = 1 при большом количестве испытаний образцов; К1= 1,05 при испытании менее 5 образцов; К1 = 1,1 при испытании менее 3 образцов;

К2 — коэффициент, учитывающий категорию дороги: К2 = 1,03 — для дорог I и II; К2 = 1 — для дорог — III-V категорий;

К3 — коэффициент, учитывающий степень ущерба для народного хозяйства в случае аварии сооружения: К3 = 1,2, если разрушение представляет опасность для движения либо вызывает перерыв движения более чем на 1 сут; К3 = 1,1, если ожидаемый перерыв движения менее 1 сут; К3 = 1, если нарушение устойчивости вызывает снижение скоростей движения или нарушает работу водоотводных устройств;

К4 — коэффициент, учитывающий соответствие расчетной схемы естественным инженерно-геологическим условиям: К4 = 1,05, если расчет ведется методом попыток; К4 = 1, если плоскость ослабления грунтового массива ясно выражена и грунт однороден;

К5 — коэффициент, учитывающий вид грунта и его работу в сооружении: К5 = 1,03 — для песчаных грунтов; К5 = 1,05 — для глинистых грунтов;

Км — коэффициент, учитывающий особенности метода расчета: Км = 1 при расчетах по Терцаги — Крею и Шахунянцу; Км = 0,8 — по Маслову — Береру.

Для сухих откосов земляного полотна появление сдвигающих сил обусловлено собственным весом обрушающегося массива и временной нагрузкой от подвижного состава. Для периодически подтопляемых насыпей подходов к мостам возникает дополнительное гидродинамическое давление в результате давления и трения о поверхность грунтовых частиц воды, просачивающейся из водонасыщенной насыпи после падения уровней высоких вод на спаде паводка (рис. 17.7).

Рис. 17.7. Схема к расчету устойчивости откосов подтопляемой насыпи:
1 — сухой грунт; 2 — ось насыпи; 3 — водонасыщенный грунт;
J — градиент грунтовых вод; D — гидродинамическое давление

Физическая природа сил, удерживающих массив обрушения, заключается в наличии сил внутреннего трения грунта Рtgj и сцепления с. В общем случае земляное полотно может быть представлено многослойной системой, характеризуемой наличием одного или нескольких геологических слоев с различными физико-механическими свойствами (объемный вес, силы внутреннего трения, сцепление), при этом, для водонасыщенной насыпи один и тот же грунт будет обладать разными физико-механическими показателями выше и ниже кривой депрессии. Так, для грунта ниже уровня грунтовых вод объемный вес определяют с учетом сил взвешивания, а сцепление принимают меньшим, чем для грунта сухой части насыпи.

Задача оценки устойчивости откосов земляного полотна сводится к отысканию такого положения центра критической кривой скольжения, при котором коэффициент устойчивости откоса будет наименьшим. Ни один из известных методов расчета устойчивости откосов не дает сразу точного положения центра наиболее опасной кривой скольжения, который может быть найден лишь методом последовательных приближений. При компьютерных расчетах устойчивости вопрос многодельности таких расчетов снимается.

В практике проектирования автомобильных дорог и мостовых переходов наибольшее распространение получил метод оценки устойчивости откосов шведского ученого Феллениуса, согласно которому центры наиболее опасных кривых скольжения располагаются вблизи прямой, проходящей через точки А и В, получаемой построением согласно рис. 17.8 и табл. 17.2.

Рис. 17.8. Схема к определению положения центра критической кривой скольжения:
р — распределенная нагрузка; Н — высота насыпы; Р — вес; N — нормальная сила; Т — сдвигающая сила; I-IX — расчетные отсеки

Параметры прямой Феллениуса

Коэффициент заложения откосаУгол наклона откосаУглы, град
ab
1:0,5860°
1:145°
1:1,533°40′
1:226°34′
1:318°26′
1:414°03′
1:511°19′

Глубину проникания вертикальной трещины определяют по формуле Терцаги:

где (17.8)

с — расчетное сцепление грунта;

j — угол внутреннего трения;

g — объемный вес грунта.

В первом приближении положение центра кривой скольжения принимают на пересечении прямой Феллениуса с вертикалью, проходящей через подошву откоса. Оползающий массив разбивают на вертикальные отсеки. Обычно бывает достаточно 10-20 отсеков шириной Dхi, (см. рис. 17.8). По горизонтали проверяемый массив делят на несколько слоев в соответствии с положением границ раздела геологических напластований. Для подтопляемых пойменных насыпей обязательно выделяют сухую и водонасыщенную части насыпи. При этом уровень грунтовых вод по оси насыпи принимают равным расчетному уровню высокой воды (РУВВp%), а угол наклона кривой депрессии в соответствии с таблицей 17.3.

Гидравлические градиенты и углы депрессии

Наименование грунтаГидравлический градиент JУгол депрессии a
Крупнообломочный грунт0,003-0,0060,0015-0,003
Песчаные грунты0,006-0,0200,003-0,010
Супесчаные грунты0,020-0,0500,010-0,026
Суглинки0,050-0,1000,026-0,053
Глинистые грунты0,100-0,1500,053-0,081
Тяжелые глины0,150-0,2000,081-0,111
Торфянистые грунты (в зависимости от вида торфа и степени его разложения)0,020-0,1200,010-0,064

Следует иметь в виду, что пойменные насыпи, возведенные из практически водонепроницаемых грунтов, рассчитывают как обычные сухие насыпи. С другой стороны, насыпи, возведенные из грунтов с высоким коэффициентом фильтрации (среднезернистые и крупнозернистые пески, гравелистые грунты и т.д.), рассчитывают также без учета сил гидродинамического давления, поскольку уровень грунтовых вод вследствие хорошей фильтрации успевает следовать понижающемуся уровню высокой воды в реке. Однако расчеты устойчивости откосов в этих случаях все-таки рассчитывают с учетом сил взвешивания для подтопленной части грунтового массива.

Читать еще:  Что такое угол откоса бортов траншеи

На каждый i-й отсек действует:

где

Gij — вес j-й призмы грунта в пределах i-го отсека с учетом временной нагрузки, заменяемой эквивалентным слоем грунта;

ai — средний угол наклона поверхности скольжения в пределах i-го отсека;

j — угол внутреннего трения грунта на поверхности скольжения;

с — сцепление грунта на поверхности скольжения;

li — длина дуги скольжения в пределах i-го отсека.

Если рассматривать насыпь единичной длины, то вес j-й призмы i-го отсека можно вычислить:

для сухой части насыпи

для водонасыщенной части насыпи

где

Wij — площадь j -й призмы i-го отсека;

gj — объемный вес грунта j-го геологического слоя.

Гидродинамическое давление для подтопляемой части насыпей:

Wв — площадь массива обрушения ниже уровня грунтовых вод;

J — гидравлический градиент, принимаемый равным тангенсу хорды, стягивающей кривую депрессии, и принимаемый по табл. 17.3.

Таким образом, в общем случае коэффициент устойчивости земляного полотна будет определяться:

(17.9)

Последовательность детального расчета устойчивости откосов земляного полотна на современном этапе, как правило, выполняемого на компьютерах, сводится к следующему:

согласно рис. 17.7 и табл. 17.2 определяют уравнение прямой Феллениуса, вблизи которой располагаются центры наиболее опасных кривых скольжения;

по формуле (17.8) вычисляют глубину проникания трещины Терцаги (см. рис. 17.6);

исследуемый массив земляного полотна делят на п вертикальных отсеков шириной Dхi каждый (обычно п = 10-20) и на m слоев в соответствии с положением границ раздела геологических напластований и кривой депрессии (в случае подтопляемой насыпи) (см. рис. 17.8.);

задаются в первом приближении положением центра кривой скольжения на пересечении ординаты, восстановленной из подошвы откоса с прямой Феллениуса. Радиус кривой скольжения определяется значением ординаты полученного центра;

по формуле (17.9) находят значение коэффициента устойчивости откоса К;

с шагом Dх* меняют положение центра влево по прямой Феллениуса и при новом положении центра кривой скольжения по формуле (17.9) вычисляют новое значение коэффициента устойчивости К’;

если К’ К, то меняют положение центра скольжения с шагом Dх* вправо до тех пор, пока не будет установлено положение центра с минимальным значением коэффициента устойчивости (см. рис. 17.7);

далее вновь меняют положение центра кривой скольжения, но уже по нормали к кривой Феллениуса в найденной ранее точке влево с шагом Dу*, и по формуле (17.9) вычисляют значение коэффициента устойчивости К»;

если К» К’, то с шагом Dу* ищут положение наиболее опасного центра вправо от прямой Феллениуса;

найденное таким образом минимальное значение коэффициента устойчивости является расчетным для данного поперечника земляного полотна Кp. Его сравнивают с нормативным Кн по формуле (17.7) и, если оказывается, что Кp ³ Кн, то устойчивость откоса земляного полотна обеспечена. Если Кp

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Все о скальном грунте

  1. Что это такое?
  2. Основные характеристики
  3. Глубина залегания грунтовых вод
  4. Уклон почвы
  5. Применение

Знать всё о скальном грунте необходимо хотя бы просто по той причине, что он встречается весьма часто. Поэтому застройщикам необходимо правильно делать выбор фундамента для скальной группы грунтов, а для этого хорошо разбираться в таких нюансах, как коэффициент уплотнения и модуль деформации, ГОСТ угла внутреннего трения и так далее.

Что это такое?

Основные сведения относительно скальных грунтов приведены в общем стандарте. Официальное определение гласит, что скальный грунт — это тип грунта, отличающийся жёсткостью структурных связей, строящихся по кристаллизационной или цементационной схеме. В целом классификация грунтов проводится не только по виду структурной связи, но и по другим параметрам:

  • процессу появления (генезису);
  • химическому составу;
  • петрографической структуре;
  • литологическому составу;
  • состоянию;
  • практическим свойствам.

Стоит понимать, что скальные грунты могут быть не только монолитными массивами, но и трещиноватыми структурами.

По видам пород они подразделяются:

  • на магматические (диорит, гранит);
  • метаморфического происхождения (гнейс, сланец, а также кварцит и некоторые другие);
  • осадочные массы сцементированного вида (песчаник, конгломерат);
  • полускальные (гипс, мергель).

Скальный грунт может присутствовать и на равнине. Но там они чаще всего находятся на определённой глубине и скрыты осадочными массами. На земную поверхность они выходят редко.

В горных местностях скальный грунт встречается намного чаще и в очень большом масштабе. Появление его обусловлено разрушением горных пород под действием выветривающих процессов.

Основные характеристики

Скальный вскрышной грунт отличается более или менее постоянным химическим и механическим составом. В него могут входить и магматические, и осадочные породы. Обычная насыпная плотность составляет 1,65 грамма на 1 см3. Внутренняя плотность принимается равной 2-3 граммам на 1 см3. Важно: допускаются и отклонения от этого уровня в зависимости от непосредственного состава. Допустимо присутствие песка и мелких каменистых включений.

Очень важный параметр — коэффициент уплотнения, который также чётко закрепляется в ГОСТ и иных нормативных документах, в проектных материалах. Если масса пролежала в отвале свыше 120 дней либо подвергалась механическому уплотнению, то учитывают фактическое разрыхление, определяемое на месте экспертным способом. В некоторых случаях разрешается пересчитывать объём грунта иными способами, предусмотренными специальной литературой. Модуль деформации в массиве превышает 2000 МПа для магматической группы. Если же скальные породы относятся к осадочному разряду, то у них этот показатель может варьироваться от 200 до 2000 МПа; для сравнения — у нескальных образований 200 МПа являются «потолком».

Угол внутреннего трения — это показатель, иллюстрирующий способность грунтовой массы сопротивляться сдвигающему усилию. Средний вес в 1 м3, то есть плотность скального грунта, принимается обычно равным 1800 кг, разумеется, если в описании производителя прямо не указано иное значение. Многие параметры зависят от того, каким образом шёл процесс разрыхления почвенной массы. Статическое рыхление обычно применяют по отношению к устойчиво мёрзлым грунтовым массам.

Резание происходит с помощью бульдозерных и экскаваторных приспособлений. Грунты скального класса отличаются высокой твёрдостью, прочностью и плохо поддаются даже изощрённым приёмам обработки. Ручная разработка их проводится очень редко, и в основном это приурочено к завершающим этапам проходки и оформления траншей. Основную часть работ всё равно стараются выполнять при помощи техники везде, где только возможно. Все ручные разработки скальных грунтов относятся к особо тяжёлому физическому труду, оплачиваются по высшим ставкам, то есть они ещё и экономически нерациональны.

Такие свойства, как удельное сцепление, угол внутреннего трения, плотность и предел прочности при сдавливании по одной оси должны соответствовать расчётным уровням. В отчётах инженерной разведки также должно быть указано, как могут изменяться параметры в различных условиях. По фракциям товарный скальный грунт делится на два разряда: 0-300 и 0-500. Эти категории имеют достаточно разное применение. Важный параметр — уровень размягчаемости.

Ослабление жёсткости скалистой массы происходит по причине разрушения межмолекулярных связей под влиянием увлажнения. Ослабляются также связи между макроскопическими структурными единицами (зёрнами). Важно: размягчение не могут вызвать жидкости, не дающие эффекта Ребиндера. Расчётное сопротивление скального грунта по умолчанию принимается равным 10 МПа; практически никакого смысла производить более сложные расчёты при бытовом строительстве нет, за редким исключением.

Отдельная важная тема — заземление в скалистой массе; чаще всего рекомендуют прибегать к электролитическому заземлению, а более точно сделать выбор помогает инженерная консультация.

Глубина залегания грунтовых вод

Бурение скважин в скалистых породах приходится выполнять достаточно часто. Специалисты знают, что такая манипуляция таит множество секретов. Но если всё делается качественно, никаких проблем возникать не должно. Глубину залегания воды надо учитывать даже при бурении под строительные сваи. Ещё важнее она, когда идёт прокладка колодца или есть намерение добыть воду; глубину залегания всякий раз определяют индивидуально, поэтому никаких универсальных таблиц или формул быть просто не может.

Читать еще:  Уголок пвх для откосов 30х30

Уклон почвы

Крутизна откоса насыпей высотой до 3 м может быть максимум 1: 3. Для ответственных случаев — максимум 1: 4. Но для домов такое далеко не годится. Чаще всего вводится ограничение на строительство везде, где уклон превышает 3-5%. Важно: наличие уклона скалистой земли даже может стать позитивной новостью – он позволяет сооружать объёмные цоколи и глубокие подвалы без риска оползания.

При уклоне до 3-5% никакой необходимости в специальной подготовке чаще всего нет. Максимум, подсыпают песчано-гравийную подушку. А вот если уклон превышает 15%, требуются более сложные мероприятия.

Часто прибегают к сооружению многоярусных построек, чтобы ослабить связанные с этим проблемы. Части дома ставят на отдельные площадки, разделённые пространственно, и используют ступенчатые фундаменты.

Применение

На скальном грунте может быть поставлен фундамент даже очень высокого и крайне тяжёлого здания. Главное, чтобы хватало с некоторым запасом несущей способности — впрочем, как раз с этим проблем обычно не возникает. Добытый скальный грунт практически никогда не перерабатывается. Главным образом различные фракции его используют для строительства зданий и путей сообщения.

Строители берут скальный грунт для следующих целей:

  • чтобы укреплять площадку под фундамент;
  • поднимать уровень местности;
  • производить низшие марки бетона.

Многоэтажные дома на скалистых участках чаще всего строят при помощи свай. Но в малоэтажной застройке и тем более при сооружении хозпостроек такой метод не применяется. Для подсыпки под одноэтажные и двухэтажные постройки рекомендовано использовать разборные осадочные грунты. Желательна как минимум средняя фракция по крупности. Поднятие участков скальным грунтом производится практически всеми его видами; экономнее пользоваться разборно-осадочной массой мелкого строения, которую проще утрамбовать и разровнять, а сверху высыпать дресву.

Как бетонный заполнитель скальный грунт не слишком хорош. Однако небольшие его объёмы для второстепенных работ использовать всё же можно. Пример тому — опоры столбиков забора или некрупные площадки во дворах. Предпочтительна мелкая фракция, а вот всё, что больше 12 см в поперечнике, лучше отложить для иных задач. Крупный материал советуют применять для оформления садов.

Ещё скалистый грунт может использоваться:

  • для формирования основы под дорожное полотно;
  • сооружения временных дорог;
  • починки имеющихся магистралей;
  • обустройства обочин и насыпей;
  • рекультивации после окончания карьерных работ;
  • осушения болотистых участков;
  • засыпки траншей и выемок;
  • формирования альпийских горок;
  • прокладки дорожек в садах и парках;
  • оформления площадок для отдыха;
  • сооружения плотин.

ГОСТ Р 58331.1-2018 СИСТЕМЫ И СООРУЖЕНИЯ МЕЛИОРАТИВНЫЕ. КАНАЛЫ ОРОСИТЕЛЬНЫЕ. ПОПЕРЕЧНЫЕ СЕЧЕНИЯ

Добавил: Богдан Кривошея

Дата: [04.12.2019]

ГОСТ Р 58331.1-2018 СИСТЕМЫ И СООРУЖЕНИЯ МЕЛИОРАТИВНЫЕ. КАНАЛЫ ОРОСИТЕЛЬНЫЕ. ПОПЕРЕЧНЫЕ СЕЧЕНИЯ

Reclamation systems and structures. Irrigation canals. Cross sections

Предисловие

1 Разработан Федеральным государственным бюджетным научным учреждением «Российский научно-исследовательский институт проблем мелиорации» (ФГБНУ «РосНИИПМ»)

2 Внесен Техническим комитетом по стандартизации ТК 151 «Мелиорация»

3 Утвержден и введен в действие Приказом Федерального агентства по техническому регулированию и метрологии от 25 декабря 2018 г. N 1144-ст

4 Введен впервые

1 Область применения

Настоящий стандарт распространяется на каналы оросительных систем и устанавливает требования к расчету геометрических параметров поперечных сечений оросительных каналов.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие документы:

ГОСТ 21778-81 Система обеспечения точности геометрических параметров в строительстве. Основные положения

ГОСТ 25100-2011 Грунты. Классификация

СП 81.13330 «СНиП 3.07.03-85* Мелиоративные системы и сооружения»

СП 100.13330 «СНиП 2.06.03-85 Мелиоративные системы и сооружения»

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных документов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде стандартов.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 берма: Уступы на откосах гидротехнических сооружений: земляных и каменных плотинах, каналов, укрепленных берегов и т.д., служащие для придания устойчивости вышележащих частей сооружений, а также улучшения условий их эксплуатации.

геометрический параметр: Линейная или угловая величина.

[ГОСТ 21778-81, приложение 1]

грунт: Любые горные породы, почвы, осадки и техногенные образования, рассматриваемые как многокомпонентные динамичные системы и как часть геологической среды и изучаемые в связи с инженерно-хозяйственной деятельностью человека.

[ГОСТ 25100-2011, пункт 3.8]

3.4 дамба: Гидротехническое сооружение в виде насыпи для защиты территорий, ограждения искусственных водоемов и водотоков, направленного отклонения потока воды в естественных и искусственных водотоках.

3.5 канал: Искусственный открытый водоток в земляной выемке, полувыемке-полунасыпи или насыпи.

3.6 облицовка: Покрытие каналов, сооружений, зданий, выполненное из природных или искусственных материалов, отличающихся по своему качеству от основных материалов.

3.7 откос: Наклонная поверхность, являющаяся частью грунтового массива или конструкции.

3.8 поперечное сечение: Сечение под прямым углом к продольной оси.

3.9 противофильтрационное устройство: Элемент гидротехнических сооружений, предназначенный для уменьшения фильтрационного расхода через сооружение и его основание, а также для снижения фильтрационного давления на отдельные части сооружения и кривой депрессии, уменьшения градиентов напора фильтрационного потока в наиболее опасных зонах.

4 Общие положения

4.1 Выбор геометрических параметров сечения канала следует проводить в каждом конкретном случае на основании гидравлического расчета и расчета устойчивости откоса с учетом типа канала, налагаемых на него специальных мелиоративных задач, гидрогеологических и грунтовых условий.

Читать еще:  Отделка внутреннего пластикова откоса своими руками

4.2 Ширину берм или дамб (по гребню) назначают в соответствии с техническими характеристиками машин и технологией проведения работ при строительстве и эксплуатации канала. Минимальную ширину дамбы назначают из условия проезда механизмов. При использовании гребня дамбы в качестве проезжей части эксплуатационной автодороги расчет устойчивости откоса следует проводить с учетом массы эксплуатационной техники, перевозимого груза и динамической нагрузки при ее прохождении.

4.3 При прохождении оросительных и водосборно-сборных каналов в выемке, глубина которой превышает строительную глубину, первую берму устраивают на отметке строительной глубины канала. Расположение последующих берм определяют геотехническим расчетом. Строительную глубину канала принимают согласно [1].

При определении превышения отметки бермы канала над уровнем воды следует руководствоваться требованиями СП 100.13330.

4.4 Заложение внешних откосов дамб следует назначать в зависимости от свойств грунта и условий фильтрации воды из канала (приложение А).

4.5 При прохождении каналов в сложных геологических условиях геометрические параметры сечения назначают с учетом мероприятий по стабилизации русла канала. В сложных геологических условиях при основании с грунтами легкого механического состава заложение откосов назначают на основании геотехнических расчетов.

4.6 Отклонение русла канала по строительной глубине и параметру сечения не должно превышать допустимых значений. При устройстве земляного русла оросительного канала для последующей укладки защитных и противофильтрационных покрытий допускается увеличение строительной глубины канала согласно требованиям СП 81.13330.

4.7 При назначении геометрических параметров поперечного сечения канала следует учитывать технические характеристики строительных машин.

5 Поперечные сечения

5.1 Трапецеидальное сечение

Для трапецеидальных сечений относительную ширину по дну β (отношение ширины канала по дну к глубине его наполнения) вычисляют по формуле

,

где b — ширина канала по дну, м;

h — глубина воды в канале, м;

Q — расход воды в канале, м 3 /с;

m — коэффициент заложения откоса (m=ctgθ, θ — угол наклона откоса к горизонтали).

Значения отношения ширины канала по дну к глубине его наполнения приведены также в таблице 1.

Определение объемов земляных работ

Для составления проекта организации строительства, выбора типов дорожных машин и оценки стоимости строительства определяются объемы земляных работ.

Короткий участок насыпи между двумя смежными переломами продольного профиля при отсутствии поперечного уклона местности можно рассматривать как правильное геометрическое тело – призматоид с трапецеидальными основаниями.

Объем элементарного слоя

dV = F dl= (B + mh)hdl, (1)

где B – ширина земляного полотна поверху;

m – коэффициент заложения откосов.

Полный объем призматоида

, (2)

Высота насыпи в рассматриваемом сечении

, (3)

где L – длина призматоида.

Интегрирование с учетом того, что площади концевых сечений составляют:

F1 = (B + mH1)H1 и F2 = (B + mH2)H2

(4)

Если обозначить площадь сечения в середине призматоида через Fср = (B + mHср)Hср, где Hср = (H1+ H2)/2,то выражение приводится к виду

(5)

При разности отметок H1 и H2 менее 1 м можно использовать упрощенные выражения:

; или . (6)

Первое (5) из них дает несколько завышенное, а второе (6) – заниженное значение объемов земляных работ. Эти уравнения одинаково пригодны для определения объемов насыпей и выемок.

Однако при равных рабочих отметках и равной ширине проезжих частей и обочин объемы выемок больше объемов насыпей за счет дополнительного объема, связанного с наличием боковых канав.

Рассмотренные формулы относятся к прямым участкам дороги в плане и профиле. При современных методах трассирования дорог клотоидными кривыми в продольном профиле ось дороги является криволинейной. Кривизна в продольном профиле требует учета, поэтому в местах, где кривизна может вносить существенные искажения в результаты расчетов, целесообразно принимать длины участков, не превышающие 50 м.

В объемы земляных работ, подсчитанные по таблицам, вводят призматоидальные поправки на разность рабочих отметок, если она более 1,0 м на участке 100 м, поправки на устройство дорожной одежды и на дополнительные объемы по удалению растительного слоя.

Поправка на устройство дорожной одежды определяется в зависимости от конструкции дорожной одежды и способа устройства обочин. Поправка на снятие растительного слоя вводится при прохождении трассы по сельхозугодиям. Объем снимаемого грунта определяется исходя из ширины подошвы насыпи или верха выемки, толщины растительного слоя и длины участков.

Призматоидальная поправка определяется по таблицам [11] или рассчитывается по формуле

где m – коэффициент заложения откоса;

h1, h2 – рабочие отметки на соседних участках, м;

L – длина участка, м.

Эта поправка учитывается со знаком «+».

Поправка на устройство дорожной одежды вычисляется по формуле

где Fдо – площадь сечения дорожной одежды из каменных материалов, м 2 ;

где hдо – толщина дорожной одежды до песчаного слоя, м;

b – ширина проезжей части, м;

Fку – площадь сечения краевых полос и укрепления обочин, м 2 ;

где с’, с» – ширина краевой полосы и укрепления обочины, м;

hкп, hу – толщина краевой полосы с основанием и укрепления обочин, м;

Fп – площадь сечения слоя из песчаного материала при укладке его на всю ширину земляного полотна, м 2 ;

где В – ширина земляного полотна, м;

hп – толщина слоя песка, м;

m – коэффициент заложения откоса;

Fт – площадь сточного треугольника, м 2 ;

Fт = с 2 iо + b(сiо + biп / 2),

где с – ширина обочины;

io и iп – уклоны обочины и проезжей части, ‰.

Схема для определения площади: а – сточного треугольника;

б – сечения дорожной одежды

Поправку на растительный грунт принимают для всех насыпей и выемок. При устройстве насыпи поправка на растительный грунт определяется по формуле

= [B + 2m(Hср +hр / 2] hрL,(7.7)

где Hср – средняя высота насыпи;

hр – толщина снимаемого растительного грунта.

Эта поправка прибавляется к профильному объему.

При устройстве выемки от ее профильного объема отнимают поправку на растительный грунт, которая определяется по формуле

= [B +2hк(m + n) + (bк + m Hср)] hрL,

где hк и bк – глубина и ширина боковой канавы выемки, м;

m – коэффициент заложения внутреннего откоса.

При несоответствии ширины земляного полотна табличным значениям [10] вводится поправка на ширину земляного полотна

где Bт – ширина земляного полотна по таблицам [15], м;

B – существующая ширина земляного полотна, м;

hср – средняя рабочая отметка между соседними рабочими отметками по концам участка, м.

В случае несовпадения табличной крутизны откосов с запроектированной вводится поправка на крутизну откосов

где mт – коэффициент заложения откосов, принятый по таблицам [15].

Поправка на устройство искусственных сооружений учитывается в случае, если размер отверстия искусственного сооружения более 4 м. При этом устанавливают пикетажное положение начала и конца моста и соответствующие высоты насыпи. Расчет выполняют обычным способом.

На дополнительные работы, связанные с устройством временных съездов для землеройных машин, засыпкой ям и неровностей в основании насыпи из-за микрорельефа местности, не учтенные в проекте работы, вводят поправочный коэффициент 1,05 – 1,10 на общий объем работ.

Для каждого километра подсчитывается суммарный объем насыпей и выемок с учетом поправок и определяетсяобщий объем земляных работ по проектируемому варианту.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector