Hist-of-rus.ru

Строй журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет откоса по методу маслова

Страница 6: Методические рекомендации по инженерно-геологической оценке территории Молдавской ССР при проектировании и строительстве земляного полотна автомобильных дорог (48319)

Формы нарушения устойчивости склонов (откосов) для выбора расчетных схем и методов расчета (по СН 519-79)

Подтип и вид оползня

Геологические условия развития оползневого процесса

Характер нарушения устойчивости (механизм процесса)

Расчетная схема и рекомендуемые методы расчета

Тип — оползни скольжения

Срез с поворотом

Склоны или откосы, сложенные однородными глинистыми породами или слоистыми породами с горизонтальным или падающим в обратную сторону склона напластованием

Вплоть до весьма большой (м/мин)

Перемещение масс грунта или пород в пределах склона или откоса в виде отдельных блоков с некоторым поворотом вокруг горизонтальной оси по криволинейным поверхностям скольжения, иногда близким к круглоцилиндрическим

Круглоцилиндрическая поверхность скольжения. Методы К. Терцаги, Н. Янбу, Г. Шахунянца, Д. Тейлора и др.

Срез со скольжением

Склоны или откосы, сложенные однородными по составу, но различными по состоянию и прочности глинистыми породами

Вплоть до весьма большой (м/мин)

Плоскопараллельное перемещение масс грунта или пород в сравнительно однородной толще склона или откоса с отрывом и членением их на отдельные блоки

Схема плоских поверхностей смещения. Метод горизонтальных сил, метод проекций.

По контакту с наклонным основанием

Склоны или откосы, сложенные разнородными по составу и состоянию породами с падением слоев в сторону склона (откоса)

Вплоть до относительно большой (м/ч)

Плоскопараллельное смещение (сдвиг) по плоскостям напластования, разломов, древних смещений, скольжение пачек (массивов блоков) жестких пород по поверхностям ослабления

Схема, плоских поверхностей смещения. Метод горизонтальных сил (Маслова-Берера) и наклонных сил Р.Р. Чугаева

По контакту с горизонтальным основанием

Склоны или откосы, сложенные разнородными по составу и состоянию породами, залегающими горизонтально или с малым падением в сторону

Относительно невысокая (м/сут)

Почти горизонтальное перемещение части склона (откоса) под воздействием бокового давления в виде блоков по контакту со слабыми прослойками или в их пределах

Схема плоских поверхностей смещения. Методы горизонтальных сил и равноустойчивого откоса

Тип — оползни выдавливания

Оползни сдвига и выпора грунта в основании

Скол при просадке

Склоны или откосы с близким к горизонтальному залеганию слоев, когда в основании толщи относительно прочных пород залегает слой более слабых глинистых пород

Вплоть до весьма большой (м/мин)

Пластические боковые деформации раздавленных пород в слабом слое и их выдавливание под весом вышележащих пород. Вертикальное смещение пород верхней толщи с образованием стенки закола и системы трещин в голове оползня

Исключение развития пластических зон. Метод Союздорнии; оценка напряженного состояния слабого слоя в основании склона (откоса); метод круглоцилиндрических поверхностей скольжения с учетом прохождения поверхности смещения за подошвой склона (откоса)

Тип — оползни вязкопластического течения

Оползни вязкопластического смещения

Склоны, верхняя часть которых содержит значительные мощности делювиальных и элювиальных масс глинистых грунтов с низкими прочностными показателями

От очень медленной до весьма большой

Смещение делювиальных масс грунта или пород по контакту с элювиальными в их среде или по контакту с коренными породами без членения на блоки. Отсутствует поверхность смещения, секущая массив склона. Поверхность смещения, как правило, имеет произвольную форму, свойственную рельефу подстилающих пород

Учет деформаций ползучести. Метод Н.Н. Маслова

Оползни глетчеровидной или грушевидной формы

Склоны, сложенные сравнительно прочными породами, перекрытыми относительно маломощным слоем менее прочных (со слабой степенью литификации и уплотнения), например делювиальных или сильновыветрелых коренных, а также оползневых накоплений

Относительно невысокая до весьма невысокой (м/сут)

Пластическое и пластически-вязкое течение переувлажненных глинистых масс по недеформированному склону с образованием русловой формы как характерной для данного типа оползней

Схема течения вязкой жидкости. Определение расчетной скорости смещения оползня-потока. Метод Н.Н. Маслова, метод К.Ш. Шадунца

Наличие в склоне молодых глинистых отложений морского происхождения с высокой чувствительностью к динамическим воздействиям

Очень большая, вплоть до катастрофической

Течение разжиженных масс глинистых пород по склону в виде беспорядочного грязевого потока значительной ширины

Качественная оценка склонности грунтов оползневых накоплений к динамическому разжижению. Прогноз скорости смещения оползня-потока

Выветривания и выщелачивания

Наличие в склоне глинистых грунтов, резко снижающих свою прочность в результате физико-химического выветривания под воздействием погодно-климатических факторов и подземных вод, а также интенсивного выщелачивания

Очень большая, вплоть до катастрофической

Качественная оценка склонности грунтов к потере прочности в результате выветривания и выщелачивания

Склоны (откосы), сложенные покровными отложениями, чувствительными к физико-химическим процессам выветривания, а также при наличии сосредоточенных выходов грунтовых вод

Поверхностное локальное отчленение масс грунта (пород) при резко выраженном их локальном переувлажнении. Отсутствует фиксированная геологическим строением толщи поверхность оползня или скольжения. Перемещение на незначительное расстояние по склону или откосу с расположением деформированного грунта в пределах поверхности

Прогноз образования оплывин в поверхностных слоях склонов и откосов; расчет по единичному элементу; расчет по сдвигу с упорной призмой; расчет по методу круглоцилиндрической поверхности скольжения.

Склоны (откосы) с имеющимися оползневыми формами типа оплывов, а также при наличии сильновыветрелых или склонных к быстрому выветриванию глинистых грунтов

Вплоть до относительно большой (м/сут)

Поверхностное течение локально переувлажненных масс грунта за пределы склона или откоса

Схема поверхностного течения вязкой жидкости. Прогноз скорости течения по единичному элементу

Тип — оползни глубинного вытекания

Оползни гидродинамического выноса

Склоны или откосы, в водонасыщенных песчаных толщах которых имеются фильтрационные потоки; подтопляемые склоны (откосы)

Вплоть до весьма большой

Разрушение структуры песчаных пород при возникновении в них гидравлических градиентов; выпор или выплывание суффозионной массы грунтов, вовлекающих в движение породы перекрывающей толщи склона (откоса)

Качественная и количественная оценка опасности возникновения суффозии при расчетных горизонтах подземных вод и их напоров. Расчет на выдавливание. Метод Союздорнии. Метод, использующий принцип угла наибольшего отклонения.

Склоны и откосы, сложенные пылеватыми или пылевато-глинистыми грунтами, обладающими просадочными свойствами. Увлажнение нижней части просадочной толщи, сопровождающееся лавинным разрушением структурных связей пород и резким снижением прочности

Вплоть до катастрофической

Просадка и последующее вязкое течение пород в нижней части просадочной толщи с образованием скола, проседания и смещения по склону (откосу) блоков выше лежащих жестких пород с последующим их дроблением. Образование ломаной поверхности смещения: в верхней части склона (откоса) — вертикальной, а в средней и нижней — определяемой характером кровли несмещающихся пород

Читать еще:  Укрепление откосов насыпи геоматами

Качественная и количественная оценка степени просадки грунтов в основании склона (откоса). Расчетная схема — выдавливание и выпор грунта в основании, оценка напряженного состояния. Метод Союздорнии.

Тип — оползни сложные

Склоны или откосы, представленные сложным напластованием пород различного генезиса, состава, состояния, при наличии древнеоползневых форм, фильтрационных потоков

Сочетание различных типов смещений, характерных для механизмов простых оползней

Расчетные схемы, соответствующие типам простых по механизму оползней и соответствующие им методы расчета.

1. Общие положения и основные понятия. 2

2. Основные особенности инженерно-геологических условий территории Молдавской ССР. 4

3. Инженерно-геологическая оценка местности при проектировании автомобильных дорог. 11

4. Принципы выбора вариантов проложения трасс автомобильных дорог в условиях Молдавской ССР. 21

Приложение 1. Характеристика инженерно-геологических районов Молдавской ССР. 25

Приложение 2. Формы нарушения устойчивости склонов (откосов) для выбора расчетных схем и методов расчета (по СН 519-79) 31

Устойчивость откоса обеспечена если

Устойчивость откоса в идеально сыпучих грунтах

Устойчивость откоса в идеально сыпучих грунтах — Лекция, раздел Механика, Механика грунтов Откосом Называют Искусственно Созданную Поверхность, Ограничи.

Откосом называют искусственно созданную поверхность, ограничивающую природный грунтовый массив, выемку или насыпь (дорожное полотно, дамбы, земляные плотины, котлованы, траншеи, канавы и т.д.).

Склоном называют откос, образованный природным путем и ограничивающий массив грунта естественного сложения.

Выбор оптимальной крутизны откосов при проектировании насыпей и выемок позволяет, с одной стороны, избежать аварии, а с другой – снизить объемы земляных работ, тем самым удешевить строительство.

Основными причинами потери устойчивости откосов и склонов являются:

— устройство недопустимого крутого откоса или подрезка склона, находящегося в состоянии, близком к предельному;

— увеличение внешней нагрузки (складирование материалов на откос или вблизи его бровки, возведение сооружений);

— изменение внутренних сил (увеличение удельного веса грунта при возрастании его влажности или, напротив, влияние взвешивающего давления воды на грунты);

— неправильное назначение расчетных характеристик прочности грунта или снижение его сопротивления сдвигу за счет повышения влажности и других причин;

— проявление гидродинамического давления, сейсмических сил, различного рода динамических воздействий (движение транспорта, забивка свай и т.п.).

Обычно все эти факторы проявляются во взаимодействии., важнейшую роль играет тщательный анализ инженерно-геологической обстановки объекта.

В проектной практике используют большое количество различных методов оценки устойчивости откосов и склонов, изложенных в работах ученых: К.Тертаги, Г. Крея, Д. Тейлора, Р. Р. Чугаева, Н.Н. Маслова, М.Н. Гольдштейна, А.Л. Можевитинова и ряда других. При этом обычно анализируются два типа задач:

1) оценка устойчивости откоса или склона заданной крутизны;

2) определение оптимальной крутизны откоса или склона при заданном нормативном коэффициенте устойчивости. Коэффициент устойчивости определяют по выражению (7.1):

k st = tg φ / tg φ’ = с / с’ , (7.1)

где φ , с — расчетные значения характеристик сопротивления сдвигу грунта, принятые в проекте по данным геотехнических испытаний;

φ’ , с’ — то же, соответствующие предельному состоянию откоса или склона.

Устойчивость откоса или склона считается обеспеченной (см. лекцию № 6),

Рисунок 23 – Схемы к расчету устойчивости откосов:

а) идеально сыпучего грунта;

б) то же, при действии фильтрационных сил;

в) идеально связного грунта.

если соблюдается условие (6.11):

где k н st — нормативный коэффициент устойчивости, определяемый по по формуле (6.10) или задаваемый в проекте. Его значение находится в пределах 1,1…1,3.

Если φ не равно 0, а с=0, грунты идеально сыпучие. Рассмотрим равновесие частицы грунта, свободно лежащей на поверхности откоса (Рисунок 23, а).

Поскольку грунт обладает только внутренним трением, устойчивость частицы обеспечена, если сдвигающая сила Т будет равна или меньше удерживающей силы трения Т ‘ . При весе частицы Р и коэффициенте внутреннего трения грунта f = tg φ, это условие примет вид (7.2):

Т = sin α ; Т ‘ = Р cos α tg φ; Т ≤ Т ‘ , (7.2)

Откуда: tg α ≤ tg φ или α ≤ φ , (7.3)

Таким образом, если угол заложения откоса равен или меньше угла внутреннего трения грунта, устойчивость откоса обеспечена.

Необходимо оценить запас устойчивости откоса при этих условиях. В предельном состоянии условие (7.3) примет вид (7.4):

то есть, предельное значение угла заложения откоса в сыпучих грунтах равно углу внутреннего трения грунта. Такое значение α часто называют углом естественного откоса. Тогда, учитывая формулу (7.1), выражение (7.4) можно записать в виде (7.5):

tg φ’ = tg φ / k st; α = arctg (tg φ / k st) , (7.5)

k st = tg φ / tg α , (7.6)

При k st ≥ k н st откос обладает необходимым запасом устойчивости.

При проектировании часто требуется определять угол заложения откоса, гарантирующий его устойчивость в соответствии с заданным нормативным коэффициентом устойчивости. В этом случае во второе уравнение формул (7.5) вместо k st нужно подставить k н st :

α = arctg (tg φ / k н st) , (7.7)

Эта тема принадлежит разделу:

Механика грунтов

Кафедра автомобильных дорог.. м е х а н и к а г р у н т о в.. курс лекций..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Устойчивость откоса в идеально сыпучих грунтах

Основы расчёта ферм: ручной и машинный счёт

Фермами называют плоские и пространственные стержневые конструкции с шарнирными соединениями элементов, загружаемые исключительно в узлах. Шарнир допускает вращение, поэтому считается, что стержни под нагрузкой работают только на центральное растяжение-сжатие. Фермы позволяют значительно сэкономить материал при перекрытии больших пролётов.

  • Способ проекций
    • Метод вырезания узла
    • Метод сечений
  • Способ моментной точки
  • Признаки нулевого стержня
  • Расчёт ферм на персональном компьютере
    • Порядок работы в программе Полюс

  • по очертанию внешнего контура;
  • по виду решётки;
  • по способу опирания;
  • по назначению;
  • по уровню проезда транспорта.

Также выделяют простейшие и сложные фермы. Простейшими называют фермы, образованные последовательным присоединением шарнирного треугольника. Такие конструкции отличаются геометрической неизменяемостью, статической определимостью. Фермы со сложной структурой, как правило, статически неопределимы.

Читать еще:  Крутизна откосов траншеи для супеси

Для успешного расчёта необходимо знать виды связей и уметь определять реакции опор. Эти задачи подробно рассматриваются в курсе теоретической механики. Разницу между нагрузкой и внутренним усилием, а также первичные навыки определения последних дают в курсе сопротивления материалов.

Рассмотрим основные методы расчёта статически определимых плоских ферм.

Способ проекций

На рис. 2 симметричная шарнирно-опёртая раскосная ферма пролётом L = 30 м, состоящая из шести панелей 5 на 5 метров. К верхнему поясу приложены единичные нагрузки P = 10 кН. Определим продольные усилия в стержнях фермы. Собственным весом элементов пренебрегаем.

Опорные реакции определяются путём приведения фермы к балке на двух шарнирных опорах. Величина реакций составит R (A) = R (B) = ∑P/2 = 25 кН. Строим балочную эпюру моментов, а на её основе — балочную эпюру поперечных усилий (она понадобится для проверки). За положительное направление принимаем то, что будет закручивать среднюю линию балки по часовой стрелке.

Метод вырезания узла

Метод вырезания узла заключается в отсечении отдельно взятого узла конструкции с обязательной заменой разрезаемых стержней внутренними усилиями с последующим составлением уравнений равновесия. Суммы проекций сил на оси координат должны равняться нулю. Прикладываемые усилия изначально предполагаются растягивающими, то есть направленными от узла. Истинное направление внутренних усилий определится в ходе расчёта и обозначится его знаком.

Рационально начинать с узла, в котором сходится не более двух стержней. Составим уравнения равновесия для опоры, А (рис. 4).

Очевидно, что N (A-1) = -25кН. Знак «минус» означает сжатие, усилие направлено в узел (мы отразим это на финальной эпюре).

Условие равновесия для узла 1:

Из первого выражения получаем N (1−8) = —N (A-1)/cos45° = 25кН/0,707 = 35,4 кН. Значение положительное, раскос испытывает растяжение. N (1−2) = -25 кН, верхний пояс сжимается. По этому принципу можно рассчитать всю конструкцию (рис. 4).

Метод сечений

Ферму мысленно разделяют сечением, проходящим как минимум по трём стержням, два из которых параллельны друг другу. Затем рассматривают равновесие одной из частей конструкции. Сечение подбирают таким образом, чтобы сумма проекций сил содержала одну неизвестную величину.

Проведём сечение I-I (рис. 5) и отбросим правую часть. Заменим стержни растягивающими усилиями. Просуммируем силы по осям:

N(9−3) = P — R(A) = 10 кН — 25 кН = -15 кН

Стойка 9−3 сжимается.

Способ проекций удобно применять в расчётах ферм с параллельными поясами, загруженными вертикальной нагрузкой. В этом случае не придётся вычислять углы наклона усилий к ортогональным осям координат. Последовательно вырезая узлы и проводя сечения, мы получим значения усилий во всех частях конструкции. Недостатком способа проекций является то, что ошибочный результат на ранних этапах расчёта повлечёт за собой ошибки во всех дальнейших вычислениях.

Способ моментной точки

Способ моментной точки требует составлять уравнение моментов относительно точки пересечения двух неизвестных сил. Как и в методе сечений, три стержня (один из которых не пересекается с остальными) разрезаются и заменяются растягивающими усилиями.

Рассмотрим сечение II-II (рис. 5). Стержни 3−4 и 3−10 пересекаются в узле 3, стержни 3−10 и 9−10 пересекаются в узле 10 (точка K). Составим уравнения моментов. Суммы моментов относительно точек пересечения будут равняться нулю. Положительным принимаем момент, вращающий конструкцию по часовой стрелке.

Из уравнений выражаем неизвестные:

N(9−10) = (2d∙R(A) — d∙P)/h = (2∙5м∙25кН — 5м∙10кН)/5м = 40 кН (растяжение)

N(3−4) = (-3d∙R(A) + 2d∙P + d∙P)/h = (-3∙5м∙25кН + 2∙5м∙10кН + 5м∙10кН)/5м = -45 кН (сжатие)

Способ моментной точки позволяет определить внутренние усилия независимо друг от друга, поэтому влияние одного ошибочного результата на качество последующих вычислений исключено. Данным способом можно воспользоваться в расчёте некоторых сложных статически определимых ферм (рис. 6).

Требуется определить усилие в верхнем поясе 7−9. Известны размеры d и h, нагрузка P. Реакции опор R(A) = R(B) = 4,5P. Проведём сечение I-I и просуммируем моменты относительно точки 10. Усилия от раскосов и нижнего пояса не попадут в уравнение равновесия, так как сходятся в точке 10. Так мы избавляемся от пяти из шести неизвестных:

Аналогично можно рассчитать остальные стержни верхнего пояса.

Признаки нулевого стержня

Нулевым называют стержень, в котором усилие равно нулю. Выделяют ряд частных случаев, в которых гарантированно встречается нулевой стержень.

  • Равновесие ненагруженного узла, состоящего из двух стержней, возможно только в том случае, если оба стержня нулевые.
  • В ненагруженном узле из трёх стержней одиночный (не лежащий на одной прямой с остальными двумя) стержень будет нулевым.

  • В трехстержневом узле без нагрузки усилие в одиночном стержне будет равно по модулю и обратно по направлению приложенной нагрузке. При этом усилия в стержнях, лежащих на одной прямой, будут равны друг другу, и определятся расчётом N(3) = -P, N(1) = N(2).
  • Трехстержневой узел с одиночным стержнем и нагрузкой, приложенной в произвольном направлении. Нагрузка P раскладывается на составляющие P’ и P» по правилу треугольника параллельно осям элементов. Тогда N(1) = N(2) + P’, N(3) = -P».

  • В ненагруженном узле из четырёх стержней, оси которых направлены по двум прямым, усилия будут попарно равны N(1) = N(2), N(3) = N(4).

Пользуясь методом вырезания узлов и зная правила нулевого стержня, можно проводить проверку расчётов, проведённых другими методами.

Расчёт ферм на персональном компьютере

Современные вычислительные комплексы основаны на методе конечного элемента. С их помощью осуществляют расчёты ферм любого очертания и геометрической сложности. Профессиональные программные пакеты Stark ES, SCAD Office, ПК Лира обладают широким функционалом и, к сожалению, высокой стоимостью, а также требуют глубокого понимания теории упругости и строительной механики. Для учебных целей и подойдут бесплатные аналоги, например Полюс 2.1.1.

В Полюсе можно рассчитывать плоские статически определимые и неопределимые стержневые конструкции (балки, фермы, рамы) на силовое воздействие, определять перемещения и температурное воздействие. Перед нами эпюра продольных усилий для фермы, изображённой на рис. 2. Ординаты графика совпадают с полученными вручную результатами.

Порядок работы в программе Полюс

  • На панели инструментов (слева) выбираем элемент «опора». Размещаем помещаем элементы на свободное поле кликом левой кнопки мыши. Чтобы указать точные координаты опор, переходим в режим редактирования, нажав на значок курсора на панели инструментов.
  • Двойной клик по опоре. Во всплывающем окне «свойства узла» задаём точные координаты в метрах. Положительное направление осей координат — вправо и вверх соответственно. Если узел не будет использоваться в качестве опоры, установите флажок «не связан с землёй». Здесь же можно задать приходящие в опору нагрузки в виде точечной силы или момента, а также перемещения. Правило знаков такое же. Удобно разместить крайнюю левую опору в начале координат (точка 0, 0).
  • Далее размещаем узлы фермы. Выбираем элемент «свободный узел», кликаем по свободному полю, точные координаты прописываем для каждого узла в отдельности.
  • На панели инструментов выбираем «стержень». Кликаем на начальном узле, отпускаем кнопку мышки. Затем кликаем на конечном узле. По умолчанию стержень имеет шарниры на двух концах и единичную жёсткость. Переходим в режим редактирования, двойным кликом по стержню открываем всплывающее окно, при необходимости изменяем граничные условия стержня (жёсткая связь, шарнир, подвижный шарнир для опорного конца) и его характеристики.
  • Для загружения ферм используем инструмент «сила», нагрузка прикладывается в узлах. Для сил, прикладываемых не строго вертикально или горизонтально, устанавливаем параметр «под углом», после чего вводим угол наклона к горизонтали. Альтернативно можно сразу ввести значение проекций силы на ортогональные оси.
  • Программа считает результат автоматически. На панели задач (вверху) можно переключать режимы отображения внутренних усилий (M, Q, N), а также опорных реакций (R). Результатом будет эпюра внутренних усилий в заданной конструкции.
Читать еще:  Геосинтетика для укрепления откосов

В качестве примера рассчитаем сложную раскосную ферму, рассмотренную в методе моментной точки (рис. 6). Примем размеры и нагрузки: d = 3м, h = 6м, P = 100Н. По выведенной ранее формуле значение усилия в верхнем поясе фермы будет равно:

O(7−9) = -8d∙P/h = -8∙3м∙100Н/6м = -400 Н (сжатие)

Эпюра продольных усилий, полученная в Полюсе:

Значения совпадают, конструкция смоделирована верно.

  1. Дарков А. В., Шапошников Н. Н. — Строительная механика: учебник для строительных специализированных вузов — М.: Высшая школа, 1986.
  2. Рабинович И. М. — Основы строительной механики стержневых систем — М.: 1960.

Открытый водоотлив: бюджетный метод с ограничениями в применении

Ищете бюджетный вариант водопонижения неглубокого котлована? Обратите внимание на открытый водоотлив. Да, это не универсальный метод, но, возможно, именно в вашем случае он подойдет и позволит сэкономить приличную сумму. Читайте статью наших экспертов, а если возникнут вопросы — не стесняйтесь и звоните: специалисты группы компаний «КС» и «ВММ» помогут разобраться.

Технология открытого водоотлива

Открытый водоотлив — наиболее простой и наименее затратный из всех способов осушения строительного участка. Вода откачивается напрямую из котлована или траншеи. Минус в том, что эта технология оправдывает себя только в котлованах с устойчивыми грунтами: галечниковые, гравийные, скальные породы не осыпаются на откосах и в основании выемки.

В некоторых случаях открытый водоотлив оказывается эффективным даже в котлованах с песчаными грунтами, особенно если он сочетается с глубинным водопонижением иглофильтровыми установками.

Попытки использовать этот недорогой способ осушения котлованов без глубинного водопонижения на песчаных грунтах приводит к оплыванию откосов и разрыхлению грунта. В таком случае потребуется соорудить шпунтовые ограждения и дренажную пригрузку по откосам и дну котлована.

Открытый водоотлив: крупный план

Для реализации водоотлива по этой технологии потребуется:

  • водосборная канава;
  • зумпф или приямок;
  • насос для откачки воды;
  • сбросной трубопровод.

Осушение выемок в однородных грунтах предваряется устройством зумпфов — приемных колодцев глубиной 0,5-0,7 м, дно которых засыпается крупным песком и гравием. Помимо зумпфов, вырываются водосборные канавы глубиной 0,3-0,6 м. По мере осушения дно углубляется землеройными машинами. Вода откачивается насосами не со дна котлована, а из зумпфов, что позволяет снизить гидродинамическое давление, которое деформирует дно котлована.

Если осушаемая выемка расположена ниже уровня грунтовых вод, зумпф или канаву выкапывают на кровле водоупорных грунтов по основанию откосов котлована.

При разработке котлована, дно которого доходит до водоупора, выемка грунта осуществляется с подключением водопонижения иглофильтрами. Глубинное водопонижение гарантирует высокую скорость земляных работ. По завершении выемки грунта открытый водоотлив отводит насосами воду с откосов котлована.

Оборудование для открытого водоотлива

Расчет объема воды, который потребуется откачать при водоотливе определяет выбор насосного оборудования.

Расчет производится по формуле: W = V+qt, где:

  • V — объем воды в котловане, м3;
  • q — приток воды в котловане, м3/ч;
  • t — продолжительность осушения котлована, ч.

Воду выкачивают диафрагмовые или центробежные насосы соответствующей производительности. Важно грамотно установить скорость откачки воды, чтобы слишком быстрое осушение не повредило откосы котлована.

В первые дни откачки интенсивность водопонижения не должна превышать 0,5-0,7 для крупнозернистых и скальных грунтов и 0,3-0,4 для среднезернистых пород и 0,15-0,2 м/сут для мелкозернистых грунтов. Впоследствии откачку можно увеличить до 1-1,5 м/сут, но на последних 1,2-2 м глубины откачку воды необходимо замедлить, чтобы не повредить дно котлована.

За более чем десятилетний срок работы в сфере водопонижения наши специалисты протестировали множество единиц техники различных производителей. Сегодня для откачки поверхностных и грунтовых вод они используют самовсасывающие насосы Борей и Varisco. Оборудование откачивает грязную воду с примесью грунта с максимальным диаметром частиц до 76 мм, с глубины до 6 метров.

Для решения задач открытого водоотлива прекрасно себя зарекомендовала насосная установка на тележке с колесами. Мотопомпа Борей 300 перекачивает грязную воду с содержанием абразива до 10% и твердых частиц размером до 76мм. Подходит для осушения с иглофильтровыми системами.

Как подобрать оптимальное оборудование для открытого водоотлива?

В зависимости от объемов объекта, структуры грунта, особенностей ландшафта и предоставленной заказчиком документации, мы подбираем оборудование. Каждый случай мы рассматриваем индивидуально и находим наиболее эффективное решение проблемы заказчика.

Мы не просто продаем насосное оборудование, а ориентируемся на грамотное решение вашей задачи. Довольный клиент вернется и приведет других, а это гораздо ценнее сиюминутной выгоды!

Если у вас остались вопросы, или вы хотели бы проконсультироваться относительно выбора техники для водоотлива, позвоните по номеру телефона, указанному на сайте, или заполните форму обратной связи.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector