Hist-of-rus.ru

Строй журнал
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Определение угла естественного откоса зерна

Расчет винтового конвейера

Расчет винтового конвейера базируется на исходных данных, которые необходимы для его проектирования: описание и свойства груза, его количество (для определения производительности), высота и расстояние перемещения. Схема будущего транспортёра и его конструктивные элементы разрабатываются на основании этой информации.

Шнековый или винтовой конвейер – устройство непрерывного действия для перемещения насыпных грузов по закрытому или открытому (U-образному) жёлобу, посредством шнека – вращающегося вала с винтовой спиралью. Материал подаётся в приёмный патрубок агрегата.

С помощью шнека можно существенно механизировать производственный процесс, сэкономить время на транспортировку, увеличить производительность предприятия в целом.

Наибольшей популярностью эти механизмы пользуются на предприятиях по производству комбикормов, сахара, муки, зерна, стройматериалов; в машиностроении и химической отрасли. На таком конвейере перемешивается песок при производстве стекла. Токсичные вещества, химикаты в химической промышленности также транспортируются с помощью винтового конвейера. Часто винтовой конвейер используют на производстве в качестве дозатора или смесителя.

Расчёт теоретической производительности транспортёра

Теоретическая производительность шнека в горизонтальном положении зависит от заданных диаметров и частоты вращения, а также от угла наклона, характера подачи материала в транспортёр и других факторов.

Определение исходных данных для расчёта винтового конвейера

Диаметр и коэффициент заполнения шнека принимаются в зависимости от сферы применения конвейера и свойств материала, который будет транспортироваться. Не стоит выбирать наименьший допустимый диаметр винта, ведь это чревато быстрым износом его трущихся частей при перемещении груза.

Таблица 1. Диаметр и шаг винта

Следует учитывать, что теоретические расчёты производительности транспортёра ─ это оценочный (приблизительный) показатель. Для более точного (однозначного) результата производительности шнекового конвейера опытные инженеры-проектировщики учитывают ряд эмпирических показателей, которые не представлены в виде практических данных (в таблице). Принимая такие значения, специалисты основываются на своём опыте проектирования конвейеров для конкретных предприятий и задач: принимают во внимание расположение оборудования, условия загрузки и свойства материала, который будет перемещаться. К таким данным относится выбор наиболее подходящего типа привода и его мощности, коэффициентов запаса, разгрузки спирали.

Формула для расчёта производительности винтового конвейера

Расчет шнекового транспортера для определения объёмной производительности Q (м 3 /ч) выполняется по формуле:

D – диаметр шнека конвейера, м;

t – шаг шнека конвейера, м;

n – частота вращения шнека, об/мин;

ψ– коэффициент заполнения поперечного сечения шнека конвейера;

ρ – плотность транспортируемого продукта, т/м 3 ;

C –коэффициент поправки на угол наклона шнека φ.

Коэффициент ψ зависит от вида груза и принимается следующим образом:

  • 0,125 ─ тяжёлые абразивные материалы;
  • 0,25 ─ тяжёлая малоабразивная продукция;
  • 0,32 ─ лёгкие малоабразивные грузы;
  • 0,4 ─ лёгкие неабразивные материалы.

Если транспортируются легкосыпучие и пылевидные грузы, то представленные выше значения ψ рекомендуют понижать на 10%. Коэффициент поправки на угол наклона шнека (с) зависит от угла наклона (φ) конвейера к горизонту и указан в таблице 2.

Выбор типа конвейера в зависимости от груза

Тип транспортирующего оборудования (конвейера) зависит от свойств материала, который будет транспортироваться, а также от необходимой производительности, траектории перемещения груза и размеров трассы. Шнековый конвейер рассчитывается в несколько этапов: определяются его основные параметры и необходимая мощность; выбирается рабочий орган и двигатель.

Насыпные грузы имеют свои свойства, по которым можно определить необходимые технические характеристики будущего транспортного оборудования:

  • гранулометрические (кусковатость) ─ количественное соотношение частиц груза по крупности;
  • содержание влаги (%);
  • насыпная плотность материала (т/м 3 );
  • угол естественного откоса (градусы);
  • абразивность и слёживаемость.

Также сыпучие грузы распределяются по значению насыпной плотности ρ: лёгкие (насыпная плотность ρ менее 600 кг/м 3 ;), средние – ρ=600 кг/м3; тяжёлые – значение ρ в пределах от 600 кг/м 3 до 2000 кг/м 3 ; очень тяжёлые.

Угол естественного откоса сыпучей продукции ─ это угол между горизонтальной плоскостью и свободным откосом сыпучего груза. Эти углы различаются в зависимости от состояния груза: покоя (угол Ln) или движения (угол L). Зачастую угол движения принимается 0,7Ln. Подвижность частиц груза и характеризует угол откоса.

Слежанными называются насыпные грузы, частицы которых потеряли свою подвижность, находясь в длительном покое.

Таблица 3. Классификация насыпных грузов по крупности

Исходные данные для расчёта конвейеров принимаются следующие:

  • характеристика транспортируемого материала;
  • производительность;
  • режим и условия работы;
  • параметры трассы перемещения груза.

Конструкция и производительность винтового конвейера

Процесс сборки винтового транспортера заключается в составлении корпуса из нескольких отдельно изготовленных секций. Зачастую цилиндрические секции скрепляются болтами (но всё же форма и размеры корпуса определяются на стадии расчёта). Модульная структура секций позволяет регулировать длину оборудования: на каждой секции располагают фланцы. Они позволяют удобно присоединять секции одна к другой, а также устанавливать торцевые стенки с подшипниковыми и уплотнительными узлами. Во время проектирования и расчёта шнекового транспортера, Шнековый транспортер проектируется и устанавливается длинной до 40 м. Винт транспортёра может быть с правым или с левым спиральным ходом. Винты производятся одно-, двух- или трёхзаходными. Зерновая масса или другая продукция всыпается в жёлоб через специальный люк, расположенный в крышке оборудования. Перемещаемый материал трётся о стенки жёлоба, а сила тяжести, в свою очередь, предотвращает вращение продукции вместе с винтом.

Реализованные проекты

Строительство элеваторов, зернокомплексов. Производство элеваторного оборудования.

Конструкция шнекового транспортёра

Конструкция винтового конвейера состоит из внутренних узлов разгрузки и загрузки, большой спирали и присоединительных фланцев. Вид шнекового конвейера для зерна выбирается в зависимости от его назначения на производстве и количества зерновой культуры, которую необходимо будет перемещать. Специфический шнек имеет определённую густоту навивки и диаметр и является основным рабочим органом шнекового транспортера. Продуктивность винтового транспортёра зависит именно от диаметра шнека и диаметра трубы. Мотор-редуктор ─ это движущий орган шнек транспортёра, который и приводит машину в действие.

Цилиндрический шнековый транспортер является одним из самых распространённых. Его корпус в виде трубы отличается жёсткостью, а сам агрегат компактный и прост в использовании. Он подходит практически для всех отраслей промышленности. Обратим внимание на его особенности и дополнительные функии:

  1. Конвейеры бывают прямые, с регулируемым углом наклона, вертикальные.
  2. Стационарные или передвижные.
  3. Материал корпуса и шнека ─ нержавеющая или оцинкованная сталь.
  4. Оснащаются дозаторами.
  5. Возможны регулировка скорости и реверсивное вращение шнека.

Конвейер открытого типа ─ это желоба или половина трубы, внутри которой вращается винт. Прямоугольного контейнера также может быть корпусом открытого транспортера. Механизм эксплуатируется только в помещении, так как не является герметичным: возможно попадание влаги и пыли. Желательно, чтобы перемещаемые материалы не имели запаха, не разлетались и не создавали пыль в процессе транспортировки.

Шнековые транспортеры бывают двух видов: стационарные и передвижные и, конечно, отличаются и имеют свои особенности. Но в целом можем выделить несколько основных преимуществ:

  • компактность оборудования, мобильность, удобство в использовании и небольшой вес;
  • конструкция агрегата прост в обслуживании и ремонте;
  • высокая работоспособность и производительность;
  • конвейер позволяет транспортировать груз в труднодоступные места по во всех плоскостях.

Мелкий и пылевидный груз полностью сохраняется внутри корпуса, что позволяет минимизировать потери продукции. Наклонных агрегаты помогут сэкономить пространство, ведь для них нужно меньше места при одинаковой длине (сравнительно с горизонтальными транспортёрами). Винтовой конвейер шнек состоит из отдельных частей и соединяется между собой фланцевыми соединениями. Таки образом можно легко изменить длину транспортёра. Нержавеющая сталь, из которой изготовлены все детали агрегатов, предотвращает окисление перемещаемого продукта.

Читать еще:  Как правильно запенить пластиковый откос

Компактные размеры механизмов — возможность их интеграции в различные виды производства.

Строительство элеваторов

Мы выстраиваем взаимовыгодное сотрудничество с приоритетом долгосрочных отношений с заказчиками в плоскости предоставления широкого спектра услуг: от проектирования и строительства до ввода объекта в эксплуатацию и послегарантийного обслуживания объектов.

Последние новости

© 2021
Официальный сайт компании
«Эксперт-Агро»

  • Наши партнеры
  • О компании
  • Блог
  • Новости
  • Контакты
  • Наши клиенты
  • Реализованные проекты
  • Вакансии
  • Наши партнеры
  • Отзывы, рекомендации и благодарности
  • Сертификаты и награды
  • Вопрос & Ответ
  • Дилеры и партнеры
  • Сервис и ремонт
  • Условия гарантии

© 2021
Официальный сайт компании
«Эксперт-Агро»

Транспортные характеристики зерна

Зерновые грузы (злаковые) — пищевые продукты, используются для получения крупы, муки и пр., а также как корм для с/х животных. Находятся в состоянии непрерывного обмена с окружающей средой — дышат и прорастают; этот процесс энергетический и происходит с выделением тепла, чем выше температура и влагосодержание зерна, тем интенсивнее этот процесс; при этом выделяется углекислый газ, вода, спирт и другие вещества, с одновременным поглощением кислорода. Концентрация углекислого газа и снижение содержания кислорода в грузовых помещениях могут достичь опасных для человека величин, что следует учитывать при посещении трюмов.

По своему назначению зерновые грузы подразделяют на три основные группы:

1) злаковые – пшеница, просо, гречиха и т. д.;

2) бобовые – фасоль, чечевица, соя и т. д.;

3) масличные – подсолнечник, конопля, лен, клещевина и т. д.

Зерно относится к ценным продовольственным грузам, при перевозке которых необходимо обеспечивать сохранность в количественном и качественном отношении.

Значительное влияние на объемную массу зерновых грузов оказывают скважистость и влажность. Скважистость — объем промежутков между зернами, заполненный воздухом. Она предопределяет оседание зерна в процессе перевозки и способствует его воздухопроницаемости. Скважистость зерновой массы влияет на плотность ее укладки в грузовые помещения при погрузке, степень оседания и образования свободного пространства над поверхностью груза при транспортировании зерна насыпью, благодаря чему зерно может в пути перемещаться и оказывать влияние на остойчивость судна. На величину скважистости влияет ряд факторов: форма, размер, характер и состояние поверхности зерна, влажность, натурный вес, сыпучесть и др. Данное свойство груза способствует газопроницаемости и увеличению общей поглотительной поверхности зерновой массы.

В большой степени влажность зерна зависит от влажности окружающей среды, так как зерновые грузы обладают повышенной гигроскопичностью. Гигроскопичность — свойство зерна поглощать пары воды из окружающей среды (сорбция), а в сухом воздухе отдавать излишнюю влагу до установления равновесия между упругостью паров воды в зерне и относительной влажностью воздуха (десорбция). Влажность является важным фактором, оказывающим существенное влияние на количественные и качественные изменения зерна в процессе его транспортирования и хранения. Она способствует интенсификации развития и протекания биологических процессов в массе зерновых грузов. Так, ускоряются процессы дыхания зерновой массы и жизнедеятельности микроорганизмов и амбарных вредителей, которые сопровождаются поглощением кислорода воздуха с последующим выделением углекислого газа, влаги и тепла.

Зерновые грузы склонны к самосогреванию и самовозгоранию. Интенсивность дыхания зерновой массы, наличие в ней различных микроорганизмов, насекомых и клещей, выделяющих в результате своей жизнедеятельности некоторое количество тепла, при отсутствии достаточной вентиляции и плохой теплопроводности зерновой массы, способствуют накоплению тепла и повышению в ней температуры. Это явление носит название самосогревания зерна. Интенсивность самосогревания повышается при увеличении влажности зерна. При температуре зерна 50° и более значительно снижается сыпучесть и наблюдается затхлый, гнилостный запах; у зерен пшеницы и ржи — потемнение оболочек.

Самосогревание может возникнуть в отдельных местах, когда в партию зерна попадает часть влажного зерна; это так называемое гнездовое или местное самосогревание, оно может перейти и в общее, когда самосогревание наблюдается по всей массе зерна. Предупредить или остановить начавшийся процесс самосогревания можно путем снижения температуры и влажности зерновой массы, для чего рекомендуется усиленная вентиляция, проветривание, проветривание или перелопачивание. Предупредительными мерами являются: очистка от примесей, насекомых и клещей, снижение влажности зерна до 14—15,5%.

Одной из основных характеристик зерна также является его сыпучесть. Сыпучесть – способность зерновой массы перемещаться по наклонной плоскости под действием собственной силы тяжести.

Существуют показатели, которые характеризуют сыпучесть:

1) угол естественного откоса – это угол между диаметром и образующимся конусом, полученным при свободном падении зерна на горизонтальную поверхность;

Физико-механические характеристики зерна и початков кукурузы

Технические науки

  • Шекихачев Юрий Ахметханович , доктор наук, профессор, профессор
  • Шекихачева Людмила Зачиевна , кандидат наук, доцент, доцент
  • Кабардино-Балкарский государственный аграрный университет им. В.М. Кокова
  • ТРЕНИЕ
  • ПРОЧНОСТЬ
  • ВЛАЖНОСТЬ
  • ПОЧАТОК
  • ЗЕРНО
  • КУКУРУЗА

Похожие материалы

  • Характеристика перспективных гидридов кукурузы
  • Технические средства для обмолота початков кукурузы
  • Исследование степени травмирования зерен при обмолота початков кукурузы
  • Обоснование оптимальной влажности зерна кукурузы при обмолоте початков
  • Влияние густоты посева семян на химический состав зерна среднеранних гибридов кукурузы

Кукурузу делят на следующие типы: I и II – зубовидная; III и IV – кремнистая; V и VI – полузубовидная; VII – лопающаяся. Кукурузу с зерном бледно-розового цвета относят к белозерной, а с зерном оранжевого и бледно-желтого оттенков – к желтозерной.

По влажности зерна партии початков разделяют на следующие категории: сухое – с влажностью до 16%; средней сухости – 16…16%; влажное – 18…20%; сырое – свыше 20%.

По содержанию сорной и зерновой примесей, а также неполноценных початков различают следующие категории кукурузы по чистоте: чистая – с содержанием початков, относимых к сорной примеси, – до 1%; неполноценных – до 2%; средней чистоты – 1…3% и неполноценных 2…5%; сорная – с содержанием початков, относимых к сорной примеси, свыше 3% и неполноценных – свыше 5%.

По форме и размерам различают два основных вида зерен кукурузы: плоские и круглые. Крупные круглые зерна расположены преимущественно у основания початка, а мелкие круглые – в верхней части [1, 2].

Размеры зерен в различных частях початка разные по длине (6…14 мм), ширине (5,5…12 мм) и толщине (3…8 мм). Колебания в размерах составляют 2…6 мм, при этом наибольшая часть зерен отличается по этим размерам друг от друга лишь на 0,8…2,5 мм.

В зависимости от типа и сорта кукурузы длина, диаметр и вес початков различны. Средние данные по размерным и весовым характеристикам початков культивируемых в настоящее время сортов кукурузы приведены в табл. 1 [3].

Таблица 1 – Размерная и весовая характеристика початков

Соотношение веса зерна и стержня колеблется: зерна 74,1…80,5% и стержня 19,5…25,9% [4].

Гигроскопические свойства зерна и стержня различны: если влажность початка до 16,7%, то влажность зерна в основном больше влажности стержня. При влажности початка более 16,7% влажность зерна кукурузы меньше влажности стержня.

Объемный вес початков, зерна и стержневой массы различен в зависимости от сорта, крупности, влажности и плотности укладки. Объемный вес початков кукурузы колеблется от 350 до 450 кг/м 3 , зерна 600…800 кг/м 3 , стержней 200…250 кг/м 3 .

Читать еще:  Не будет ли плесени под пластиковыми откосами

Скважистость — заполненные воздухом промежутки между зернами в насыпи. Обычно скважистость выражают в процентах к общему объему данной насыпи. Скважистость початков колеблется в пределах: крупные початки – 54,5%, средние – 53,1…52,3% и мелкие – 51,2…50,8%, т.е. чем крупнее початки кукурузы, тем больше их скважистость, и наоборот. С повышением влажность скважистость увеличивается.

Скважистость зерна кукурузы находится в пределах 40,4…41,3% (от объема, занимаемого всей зерновой массой).

Скорость витания зерна кукурузы колеблется в пределах 12,5…14 м/с, стержневой массы с влажностью 11% – 10…17 м/с. Расчетную скорость транспортирования стержней кукурузы следует принять равной 30 м/с.

Угол естественного откоса насыпи зерна зависит от влажности, плотности укладки, температуры зерна, слеживаемости и других факторов. При изменении влажности зерна от 11,5 до 19% (на 7,5%) угол естественного откоса повышается всего лишь на 2,5 0 , при повышении влажности от 19 до 26,5% – на 19,5…20,2 0 , т.е. примерно в 8 раз больше, чем в первом случае. Следовательно, угол откоса зерна следует принимать с учетом ее влажности.

Коэффициент трения насыпи зерна кукурузы по различным поверхностям, при объемном весе насыпи 0,7…0,75 т/м 3 и при начальной скорости движения, равной нулю (после бункера), составляет по дереву 0,7, а при начальной скорости движения более нуля (после транспортера) – 0,53; по листовой стали, соответственно, 0,58 и 0,36.

Початки кукурузы имеют особенности, связанные со сравнительно большими размерами и разным положением при движении, плотностью укладки, температурой, состоянием поверхности и т.п. [5-14].

Початки на движущейся поверхности (транспортирующая лента и др.) находятся несколько в ином положении, чем на неподвижной. Отдельно расположенные початки (не поддерживаемые другими) начинают перекатываться на движущейся ленте уже при наклоне ее в 4…7 0 .

В отличие от других зерновых культур зерна кукурузы очень плотно сидят в початке, никогда не осыпаются и требуют для своего отделения от початка значительных усилий. Как указывается в [15], среднее усилие, затрачиваемое на отрывание от стержня одиночного зерна с влажностью 22…23% при приложении силы в радиальном направлении, составляет 2,1 кгс, по касательной к окружности початка 0,6 кгс , вдоль образующей початка – 1,3 кгс.

Также существенное влияние на обруш и травмирование зерна оказывает фаза спелости или сроки уборки различных гибридов и сортов кукурузы, т.к. по данным ВИСХОМа [15] фаза спелости оказывает значительное влияние на прочность связи зерна кукурузы со стержнем (табл. 2).

Гокоев А.И. [16] установил, среднее усилие, которое затрачивается на отрывание от стержня одиночного зерна с влажностью 22…23% при приложении силы в радиальном направлении, равно 20,6 Н, по касательной к окружности початка – 5,9 Н, вдоль образующей початка – 12,2 Н.

Таблица 2 – Прочность связи зерна кукурузы со стержнем

Сушка и хранение семян подсолнечника

Л. Д. Комышник, А. П. Журавлев, Ф. М. Хасанова

Важным физико-механическим свойством семян подсолнеч­ника как объекта сушки является сыпучесть, характеризующаяся углом естественного откоса. Определяющее значение на сыпу­честь семян подсолнечника оказывают влажность семян, содер­жание посторонних примесей и их характер, а также поверхность, по которой перемещаются семена. Угол естественного откоса сухих семян подсолнечника колеблется от 27 до 35°, влажных — до 42°, а высоковлажных и засоренных (засоренность до 8%) достигает 55°, что значительно выше, чем у злаковых культур. Эти особенности семян подсолнечника вызывают определенные трудности при их поточной обработке. Легковесные семена, имея повышенный коэффициент внутреннего трения, на некоторых уча­стках технологической схемы передвигаются медленнее, чем зерно колосовых культур или кукурузы. Поэтому при работе с семена­ми подсолнечника трубы зерносушилок должны иметь больший диаметр и их устанавливают под большим углом наклона.

Трудности обработки семян подсолнечника связаны с физи­ческими особенностями и отличием их от злаковых культур. Так, насыпная плотность семян подсолнечника, поступающего на хле­боприемные предприятия, в зависимости от влажности и засо­ренности колеблется в пределах 326. . 440 кг/м3, т. е. вдвое мень­ше, чем у пшеницы, поэтому и в 2 раза меньше масса семян, поступающих в сушилку.

Наличие воздушной прослойки между ядром и плодовой обо­лочкой семян, а также значительное содержание жира явля­ется причиной более низкой скорости витания семян подсолнечни­ка, чем для зерна. Скорость их витания изменяется от 4 до 8,0 м/с, в то время как для риса 8,9. .9,5 м/с, пшеницы 9,0. .11,5, кукурузы 12,5. ,14,0 м/с. Поэтому во избежание выноса полно­ценных семян из коробов шахты и камеры нагрева сушилки скорость агента сушки должна быть ниже, чем при сушке зер­новых культур.

Удлиненная форма семянок — подсолнечника и сравнительно шероховатая поверхность обусловливают большую скважистость. Так, скважистость подсолнечника колеблется в пределах 60.

80%, а риса 50. .65, пшеницы 35. .45 и кукурузы 35. .55%. Следовательно, семена подсолнечника, имея большую скважис­тость, оказывают меньшее сопротивление при прохождении аген­та сушки в сушилках и сушатся быстрее, чем сесена других культур.

Гигроскопичность — одно из важнейших свойств зерна, опре­деляющих режимы его хранения и сушки. Для семян подсол­нечника как капиллярно-пористых коллоидных тел характерны все формы связи, которые, по классификации академика Л. А. Ре — биндера, подразделяются на химическую, физико-химическую и механическую. В процессе сушки семян их основные физичес­кие и химические свойства должны сохраниться, следовательно, химически связанную влагу не надо удалять.

Влажность семян подсолнечника, при которой остается хи­мически и адсорбционно связанная влага, часто называют кри­тической. Эта влага не участвует в жизненных процессах, не может быть использована большинсвом микроорганизмов для поддержания своей жизнедеятельности и поэтому не влияет на стойкость семян подсолнечника в процессе хранения. Следо­вательно, сушить семена необходимо до такой влажености, чтобы в них оставалась преимущественно адсобционно связанная вода.

Критическую влажность семян определяют по формуле:

Юг (100 — М)

Где Wr — влажность гидрофильной части,%; М — фактическая масличность, %.

Например, при критической влажности гидрофильной части 14 %, масличности 50 % критическая влажность семян подсол­нечника будет:

14 (100 — 50) Шкр= Ї00 :7%-

Критическая влажность семян высоковлажного подсолнеч­ника 6 8 %.

Равновесная влажность семян подсолнечника, т. е. влажность, при которой семена не отдают и не поглощают влагу, зависит от температуры, относительной влажности атмосферного возду­ха, масличности. Равновесная влажность семян изменяется в зависимости от относительной влажности воздуха ф по зако­номерности

Wp = 0,623 ф>14

Такая зависимость справедлива при ф = 45. 85%, и она не учитывает химического состава высокомасличных сортов семян подсолнечника.

М. И. Игольченко и В. М. Копейковский установили зависи­мость между равновесной влажностью семян подсолнечника с содержанием жира до 50% при температуре атмосферного воз­духа от 14 до 30°С и относительной влажности от 9 до 82%. Она выражается соотношением

Wp= 2,133 е0,017549- ф

Где е — основание натурального логарифма.

При всех равных условиях равновесная влажность маслич­ных культур в 2 раза меньше, чём зерновых. Это объясняет­ся меньшим содержанием в семенах масличных культур гид­рофильных коллоидов и наличием большого количества жира. С увеличением содержания масличности в семенах равновес­ная влажность подсолнечника уменьшается, так как с повыше­нием масличности уменьшатся содержание гидрофильных ве­ществ и соответственно увеличивается содержание гидрофобных.

Читать еще:  Показать как делают пластиковые откосы

Значительное содержание оболочки в подсолнечнике и ее высокая гигроскопичность являются предпосылками для разра­ботки рациональных осциллирующих режимов — чередования сушки, охлаждения и отволаживания. Например, применение чередования интенсивной продувки и отволаживания, во время которого влага концентрируется в оболочке, приводит к интен­сификации влагоотдачи при сушке, так как влагопроводность оболочки выше, чем ядра, и зона испарения находится у по­верхности.

Равновесная влажность составных частей семян неодинако­ва: она больше у оболочки (лузги) и меньше у ядра. Равновес­ная влажность семян занимает промежуточное положение. Со­держащиеся в массе семян подсолнечника органические и сор­ные примеси обладают большой гигроскопичностью. При одной и той же относительной влажности и температуре воздуха рав­новесная влажность органических сорных примесей больше рав­новесной влажности семян в 1,8 раза.

Основными теплофизическими характеристиками, определя­ющими теплообменные свойства масличных семян, являются теп­лоемкость, коэффициенты теплопроводности и температуро­проводности. Теплофизические характеристики, определяющие скорость протекания процессов нагрева и охлаждения, различны для отдельных семянок и семенной массы, но в обоих случаях зависят прежде всего от размеров семянок, их влажности, хими­ческого состава, масличности, лузжистости и температуры. На теплофизические показатели семенной массы большое влияние оказывают количество и состав содержащихся в ней примесей.

При увеличении влажности семян подсолнечника до 17,8% теплоемкость возрастает по линейному закону. Повышение влаж­ности да 11 % приводит к увеличению коэффициента теплопроводности, дальнейшее повышение влажности не влияет на изме­нение величины этого коэффициента. Коэффициент температуро­проводности семян при увеличении влажности до 11% возрас­тает, а при дальнейшем увеличении снижается.

Значение теплофизических характеристик семенной массы го­раздо ниже, чем отдельных семянок, вследствие значительного содержания в ней воздуха.

Технология сушки семян подсолнечника

Для семян подсолнечника различают четыре состояния по влажности: сухое до 7,0%, средней сухости свыше 7,0 до 8,0%, влажное свыше 8,0 до 9,0%, сырое свыше 9,0%. В семенах сухих и средней сухости почти нет свободной влаги, и хранить их можно длительное время.

Семена подсолнечника при поступлении на хлебоприемные предприятия и маслозаводы по качеству должны отвечать требо­ваниям базисных или ограничительных кондиций (табл. 1.).

1. Базисные и ограничительные кондиции семян подсолнечника

Базисная влажность,% Ограничительная влажность,%

TOC o «1-3» h z Южная 12 15

Центральная 13 17

Восточная 14 19

* Сорная примесь 1%, маслиничная 3%.

Специфические свойства семян подсолнечника как объекта сушки, неоднородность семянки (наличие ядра, плодовой и се­менной оболочек), естественная неоднородность семян по раз­мерам, массе и влажности, низкая прочность плодовой оболочки, влагоинерционность, низкая теплопроводность, термолабильность белковой и липидной частей системы, повышенная пожарная опасность предъявляют особые требования к способу сушки и к конструкции сушильных устройств. При сушке не должно ухудшаться качество и уменьшаться выход масла, не должно происходить растрескивания лузги и увеличения масличной при­меси. Не допускается увеличение в процессе сушки кислотного и йодного чисел жира, изменение вкусовых и пишевых достоинств подсолнечного масла.

Одним из наиболее рациональных методов улучшения техно­логических своцств, сохранения качества и повышения стойко­сти семян подсолнечника в процессе хранения является тепло­вая сушка. 6

При сушке семян подсолнечника большое значение имеет не только температура нагрева семян, но и продолжительность ее воздействия. Значения коэффициентов теплопроводности, температуропроводности для единичной семянки значительно от­личаются от тех же показателей для плотного слоя. Для быст­рого нагрева семян необходима такая конструкция сушильного аппарата, в котором бы обеспечивался нагрев каждой единич­ной семянки в отдельности. В этом случае можно значительно поднять температуру агента сушки при снижении продолжитель­ности нагрева до нескольких секунд. Кратковременное высу­шивание семян подсолнечника при более высокой температуре предпочтительнее, чем медленное высушивание при низкой.

Чтобы превратить 1 кг воды в пар, необходимо затратить около 2680 кДж тепла. При сушке фактически затрачивается на испарение 1 кг воды 5020. .6280 кДж в шахтных сушилках и 3670. .4490 кДж в рециркуляционных. При сушке семян подсол­нечника необходим обоснованный выбор температурных режи­мов. Сушка должна протекать с минимальными затратами тепла и электроэнергии, с максимальной скоростью удаления влаги при наилучших технологических свойствах высушенного мате­риала.

Сушка представляет собой комплекс одновременно проте­кающих и влияющих друг на друга явлений. Это — перенос теп­ла от агента сушки к высушиваемому материалу через его повер­хность, испарение влаги, перемещение влаги внутри материала, перенос влаги с поверхности материала в сушильную зону.

На испарение влаги влияют в основном два процесса: влаго — проводность и термовлагопроводность, которые характеризуют внутренний тепло — и влагоперенос во влажном материале. При испарении влаги поверхностные слои подсушиваются. Создается градиент влагосодержания, т. е. внутри материала влаги больше, чем на поверхности. Это явление приводит к перемещению влаги из внутренних слоев к поверхностным слоям и называется вла — гопроводностью. Причем это перемещение тем интенсивнее, чем выше температура материала. Отсюда вытекает основное прави­ло сушки: необходимо в начале сушильного процесса поддер­живать максимально допустимую температуру материала, при которой не наблюдается ухудшения пищевых, технологических, семенных и других достоинств семян подсолнечника.

Но влага перемещается не только благодаря градиенту вла­госодержания, она перемещается и благодаря градиенту темпера­тур (термовлагопроводности), т. е. влага перемещается от мало­нагретого участка к более нагретому, или, иными словами, влага перемещается по направлению потока тепла.

Применение того или иного способа сушки может способство­вать в одном случае совпадению направления перемещения влаги как в результате влагопроводности, так и термовлагопроводности, а в другом случае процесс испарения влаги в результате влагопро­водности тормозит процесс испарения влаги в результате термо­влагопроводности. В первом случае процесс испарения влаги будет протекать значительно интенсивнее, чем во втором. Для того чтобы эти процессы испарения влаги совпадали по направлению, необходимо, чтобы температура поверхности семянки подсолнеч­ника была ниже температуры внутри ядра. Сушка будет зна­чительно тормозиться, когда температура поверхности семянки выше температуры внутри ядра.

При сушке семян подсолнечника в шахтных прямоточных сушилках явление термовлагопроводности препятствует переме­щению влаги изнутри к поверхности и интенсивность потока влаги равна разности между интенсивностью потока влаги в результате влагопроводности и интенсивностью потока влаги в результате термовлагопроводности. При рециркуляционной сушке влага испаряется как под воздействием процесса влаго­проводности, так и под воздействием термовлагопроводности.

Температура материала в процессе сушки не, равна темпера­туре агента сушки. В первом периоде сушки температура ма­териала равна температуре смоченного термометра, поэтому можно применять высокие температуры агента сушки. Например, при температуре воздуха 200° С и влагосодержании его 0,008 кг/ кг температура смоченного термометра, а следовательно, и темпе­ратура материала равна 47° С. При повышении температуры воздуха до 350° С при данном влагосодержании температура смоченного термометра увеличивается до 60° С.

При кратковременном нагреве материала температуру агента сушки можно значительно повысить. Пределом является темпе­ратура, при которой температура испарения (температура смо­ченного термометра) будет равна или близка к допустимой тем­пературе нагрева материала.

При высокой температуре агента сушки прогрев семян до допустимых температур и испарение влаги с поверхности проис­ходят в течение нескольких секунд. Дальнейший подвод тепла нецелесообразен. Таким образом, для максимального использо­вания тепла и сохранения качества семян рекомендуется при­менять максима льно возможные температуры агента сушки при небольшой продолжительности нагрева.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector